Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR researchers determine genetic origin of California wild radish

17.07.2006
The rapid spread of the hybrid radish caused the extinction of its parents in the state

UC Riverside scientists studying the genetic makeup of wild radishes in California have determined that the California wild radish is descended from hybrids between two species: cultivated radish and the weed called jointed charlock. The hybrid-derived plants apparently have completely eliminated the ancestral species from California, the researchers report.

The discovery is significant because the parental species were replaced by a single, stable hybrid lineage in less than 100 years, an extremely short interval in evolution. The researchers attribute the rapid spread of the hybrid radish to the evolution of a unique combination of traits relative to the parental species. These traits include unswollen roots, which are not as sensitive to disease and injury as are swollen roots, and early flowering.

The researchers published their findings in the June issue of Evolution. Next week's issue of the journal Nature highlights their research.

"The documented instances of extinction by hybridization in which both parents are replaced by the hybrid are rare," said Subray G. Hegde, the lead author of the paper and a postgraduate research geneticist who, in 2001, joined the research group of Norman C. Ellstrand, professor of genetics in UCR's Department of Botany and Plant Sciences. "What we've shown is that the extinction of a species by this process can occur very rapidly. We need to recognize the lesson this teaches us for conservation: if we are to save organisms from extinction, we need to make sound decisions fast."

Both the cultivated radish and jointed charlock were introduced to California more than 100 years ago. While the cultivated variety, found in grocery stores, bears pink, purple and white flowers and has a swollen root, the weed bears yellow flowers (occasionally also white) and has a slender root.

California wild radish is a genetic fusion of the cultivated and weedy varieties, thriving along California's coast as well as in the inland valley. Bearing a mixture of white, purple, pink, bronze and yellow flowers, all of the plants are uniformly intermediate between the cultivated radish and jointed charlock in root size and shape. Its fruit size is intermediate also. Suggested as a hybrid lineage by UC Berkeley scientists in the 1960s, the UCR-led research now reports definitive genetic evidence for its hybrid origin.

In their research, the UCR scientists performed an extensive survey of wild radishes throughout California, cultivated radish varieties, and samples of jointed charlock from outside of California. After doing a morphological study of the three types of plants, they performed modern population genetic analysis, using a sophisticated analytical tool developed in the last five years to determine the radishes' genetic makeup.

"We found that wild radish in California has now become an evolutionary entity separate from both of its parents," said Ellstrand, a co-author of the paper. "It can serve as an excellent model organism for evolutionary studies."

Hegde noted that the California wild radish has spread fast in the state, where, unlike its parents, it has become invasive. Next in their research the scientists will look for a genetic explanation for how the hybrid acquired its invasive behavior. Said Hegde, "This approach could help us find a way to control the spread of other plants that evolved invasiveness after interspecies hybridization."

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>