Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Structure Reveals Elegant Water Flow Solution

21.12.2001


The structure of one of the basic members of the cell-membrane water-channel family, a protein called aquaporin 1 (AQP1), has been determined to a resolution of 2.2 angstroms (22 billionths of a meter).

The structure reveals the elegantly simple means by which AQP1 can transport water through the cell membrane at a high rate while effectively blocking everything else, even individual protons, the nuclei of hydrogen atoms.

Biophysicist Bing Jap led a team from Lawrence Berkeley National Laboratory’s Life Sciences Division in the difficult and painstaking crystallization of this membrane protein, whose crystal structure was then solved from x-ray diffraction at Beamline 5.0.2 of Berkeley Lab’s Advanced Light Source. Their report appears in the journal Nature today.



In almost all cells, from bacteria to those found in a variety of human tissues, pores embedded in cell membranes transport water rapidly into or out of the cell. Body temperature, digestion, reproduction, fluid pressure in the eye, and water conservation in the kidney are only a few of the processes in humans that depend on the proper functioning of cellular water channels.

"Membrane proteins are a very large class of proteins; some 30 percent of the genes in the human genome code for them. But they are notoriously difficult to crystallize, and only a few structures have been solved at very high resolution," Jap says.

Electron-microscope crystallography can use very small crystals, and the structure of AQP1 had previously been solved to a resolution of about 4 angstoms using this technique. At this resolution it is impossible to see individual water molecules, however, so vital features were left out or mistakenly characterized.

Jap and his colleagues crystallized AQP1, closely similar to that in human and other cells, from bovine red blood cells. They liberated enough protein from "gallons of blood" to make .2 millimeter crystals, suitable for x-ray crystallography at the Advanced Light Source.

"AQP1 is interesting because it is so specific for water" says Jap. "The key question was how it achieves this specificity. Theorists had come up with lots of ideas, but before we saw the structure in high resolution, nobody knew how it was accomplished."

Architecturally, AQP1 is an assembly of four units, each with three major structural features: each has an entrance, or "vestibule," on the outside of the cell envelope, connected to a similar vestibule inside the cell by a long, narrow pore.

"The secret of AQP1’s specificity is two-fold: it selects for size and for chemical nature," Jap says. "There is a very narrow constriction in the pore, which admits no molecule bigger than water. To keep out molecules smaller than water there is also a chemical filter, formed by the specific orientation and distribution of the amino acid residues lining the pore."

Molecules attempting to enter the channel are bound to water molecules that are stripped away in the pore; charged species are therefore left with net electrical charge. "The filter strongly rejects charged molecules or ions, even as small as single protons," Jap explains.

The unique distribution of amino acid residues along the pore wall also accounts for the channel’s ability to move water quickly, explains Peter Walian, a member of the team that solved the structure. "It’s a schizophrenic environment, half hydrophilic and half hydrophobic," that is, half water-loving and half water-fearing. "Water molecules readily get in because of the hydrophilic sites, but the hydrophobic regions prevent them from binding too frequently."

Thus water and only water flows freely in and out of the cell through AQP1’s pores, the direction of flow depending only on changing relative pressure inside and outside the cell. "It’s a beautiful mechanism," Walian remarks. "It’s remarkable that nobody thought of it before now."

"This is what structural biology is for," Jap says. "It shows us how extremely simple nature’s solutions can be."

"Structural basis of water specific transport through AQP1 water channel," by Haixin Sui, Bong-Gyoon Han, John K. Lee, Peter Walian, and Bing K. Jap, appears in today’s Nature.

Images of the AQP1 structure can be reached from the Berkeley Lab home page.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Paul Preuss | International Science News

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>