Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Structure Reveals Elegant Water Flow Solution

21.12.2001


The structure of one of the basic members of the cell-membrane water-channel family, a protein called aquaporin 1 (AQP1), has been determined to a resolution of 2.2 angstroms (22 billionths of a meter).

The structure reveals the elegantly simple means by which AQP1 can transport water through the cell membrane at a high rate while effectively blocking everything else, even individual protons, the nuclei of hydrogen atoms.

Biophysicist Bing Jap led a team from Lawrence Berkeley National Laboratory’s Life Sciences Division in the difficult and painstaking crystallization of this membrane protein, whose crystal structure was then solved from x-ray diffraction at Beamline 5.0.2 of Berkeley Lab’s Advanced Light Source. Their report appears in the journal Nature today.



In almost all cells, from bacteria to those found in a variety of human tissues, pores embedded in cell membranes transport water rapidly into or out of the cell. Body temperature, digestion, reproduction, fluid pressure in the eye, and water conservation in the kidney are only a few of the processes in humans that depend on the proper functioning of cellular water channels.

"Membrane proteins are a very large class of proteins; some 30 percent of the genes in the human genome code for them. But they are notoriously difficult to crystallize, and only a few structures have been solved at very high resolution," Jap says.

Electron-microscope crystallography can use very small crystals, and the structure of AQP1 had previously been solved to a resolution of about 4 angstoms using this technique. At this resolution it is impossible to see individual water molecules, however, so vital features were left out or mistakenly characterized.

Jap and his colleagues crystallized AQP1, closely similar to that in human and other cells, from bovine red blood cells. They liberated enough protein from "gallons of blood" to make .2 millimeter crystals, suitable for x-ray crystallography at the Advanced Light Source.

"AQP1 is interesting because it is so specific for water" says Jap. "The key question was how it achieves this specificity. Theorists had come up with lots of ideas, but before we saw the structure in high resolution, nobody knew how it was accomplished."

Architecturally, AQP1 is an assembly of four units, each with three major structural features: each has an entrance, or "vestibule," on the outside of the cell envelope, connected to a similar vestibule inside the cell by a long, narrow pore.

"The secret of AQP1’s specificity is two-fold: it selects for size and for chemical nature," Jap says. "There is a very narrow constriction in the pore, which admits no molecule bigger than water. To keep out molecules smaller than water there is also a chemical filter, formed by the specific orientation and distribution of the amino acid residues lining the pore."

Molecules attempting to enter the channel are bound to water molecules that are stripped away in the pore; charged species are therefore left with net electrical charge. "The filter strongly rejects charged molecules or ions, even as small as single protons," Jap explains.

The unique distribution of amino acid residues along the pore wall also accounts for the channel’s ability to move water quickly, explains Peter Walian, a member of the team that solved the structure. "It’s a schizophrenic environment, half hydrophilic and half hydrophobic," that is, half water-loving and half water-fearing. "Water molecules readily get in because of the hydrophilic sites, but the hydrophobic regions prevent them from binding too frequently."

Thus water and only water flows freely in and out of the cell through AQP1’s pores, the direction of flow depending only on changing relative pressure inside and outside the cell. "It’s a beautiful mechanism," Walian remarks. "It’s remarkable that nobody thought of it before now."

"This is what structural biology is for," Jap says. "It shows us how extremely simple nature’s solutions can be."

"Structural basis of water specific transport through AQP1 water channel," by Haixin Sui, Bong-Gyoon Han, John K. Lee, Peter Walian, and Bing K. Jap, appears in today’s Nature.

Images of the AQP1 structure can be reached from the Berkeley Lab home page.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Paul Preuss | International Science News

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>