Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Newly Discovered Gene to Hereditary Neurological Disease

17.07.2006
Scientists have linked a recently discovered gene to a rare nervous system disease called hereditary spastic paraplegia, for which there is no cure.

The discovery could lead to development of drugs that target the defective gene, said the researchers at Duke University Medical Center who discovered the mutation.

The gene defect accounts for 6 percent to 7 percent of all cases of hereditary spastic paraplegia, they said. The discovery of the gene defect will provide important insights into the causes of other major neurodegenerative diseases, including amyotrophic lateral sclerosis or Lou Gehrig's disease, said Stephan Züchner, M.D., assistant professor at the Duke Center for Human Genetics and the Department of Psychiatry.

"Patients with these genetic diseases now have no real treatment options," said Züchner, co-leader of the study team. "Our discovery will open up a new opportunity to study these diseases from a different angle so we can better understand what is causing them and which genes to target in developing treatments to manage them."

The researchers report their findings in the August 2006 issue of the American Journal of Human Genetics, which is now available online. The research was funded by the National Institutes of Health and by donations to the Duke Center for Human Genetics from individuals and families affected by hereditary spastic paraplegia.

Hereditary spastic paraplegia, one of a number of related inherited disorders, causes progressive limb weakness and stiffness, often resulting in paralysis. As with many neurodegenerative diseases, patients typically begin to show symptoms during their mid-20s to mid-50s, and the symptoms grow progressively more debilitating with time. With no cure available, physicians can only treat symptoms with physical therapy to improve muscle strength and preserve range of motion.

In their study, the Duke researchers found that one form of hereditary spastic paraplegia is linked to a gene called REEP1. The gene normally produces proteins that support the cell's energy source, the mitochondria. But a defect in the gene may disable its proteins from performing their normal functions in mitochondria – most notably the mitochondria within the nervous system's cellular pathways. Precisely how this protein malfunction occurs is still unknown, said Margaret Pericak-Vance, Ph.D., director of Duke's Center for Human Genetics and co-leader of the study.

The Duke scientists began their search for genes associated with the disease by studying two families whose members had hereditary spastic paraplegia.

Using gene-mapping techniques, the researchers identified a small stretch of DNA on chromosome 2, where the disease-causing gene was thought to reside. The researchers screened nine candidate genes that play a potential role in governing the cellular pathways of neurodegenerative disease. By meticulously examining the DNA sequence of those genes, the researchers located mutations -- changes in the DNA sequence -- in the REEP1 gene among people who have hereditary spastic paraplegia but not in their unaffected relatives.

Pericak-Vance and team member Allison Ashley-Koch, Ph.D., said that the discovery of REEP1's role in hereditary spastic paraplegia strengthens the evidence that defects in mitochondria are responsible for many types of neurodegenerative diseases. For example, scientists have discovered that Lou Gehrig's disease is caused by mutations in SOD1, a gene whose protein is also expressed in mitochondria.

With REEP1's role now identified, scientists are developing a genetic test to identify patients who have the defect, Züchner said. The Duke team has licensed its gene discovery to Athena Diagnostics Inc. to develop a genetic test for patients at risk for the disease.

Other members of the research team were Gaofeng Wang, Khan Nhat Trans Viet, Martha Nance, Perry Gaskell and Jeffrey Vance.

Becky Levine | EurekAlert!
Further information:
http://www.dukemednews.org/news/article.php?id=9799

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>