Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Engineers Use DNA to Direct Nanowire Assembly and Growth

17.07.2006
A small but growing number of engineers are using nature’s engineer – DNA – to create nanomaterials that can be used in everything from medical devices to computer circuits. A team from Brown University and Boston College is the first to use DNA to direct construction and growth of complex nanowires. Their work appears in Nanotechnology.

A research team led by Brown University engineers has harnessed the coding power of DNA to create zinc oxide nanowires on top of carbon nanotube tips. The feat, detailed in the journal Nanotechnology, marks the first time that DNA has been used to direct the assembly and growth of complex nanowires.


“If you want to make something, turn to Mother Nature” Engineers in the lab of Jimmy Xu used DNA to grow zinc oxide nanowires like this one on the tips of carbon nanotubes. The zinc oxide wires created in the lab measured between 100 and 200 nanometers long. Image: The Xu Laboratory

The tiny new structures can create and detect light and, with mechanical pressure, generate electricity. The wires’ optical and electrical properties would allow for a range of applications, from medical diagnostics and security sensors to fiber optical networks and computer circuits.

“The use of DNA to assemble nanomaterials is one of the first steps toward using biological molecules as a manufacturing tool,” said Adam Lazareck, a graduate student in Brown’s Division of Engineering. “If you want to make something, turn to Mother Nature. From skin to sea shells, remarkable structures are engineered using DNA.”

Lazareck, who works in the laboratory Jimmy Xu, professor of engineering and physics, led the research. The work is an example of “bottom up” nanoengineering. Instead of molding or etching materials into smaller components, such as computer circuits, engineers are experimenting with ways to get biological molecules to do their own assembly work. Under the right chemical conditions, molecular design and machinery – such as light-sensing proteins or viral motors – can be used to create miniscule devices and materials.

In this work, the team of engineers and scientists took the “bottom-up” approach one step further by successfully harnessing DNA to provide instructions for this self-assembly. The new structures created in the Xu lab are the first example of DNA-directed self-assembly and synthesis in nanomaterials.

The Xu lab is the first in the world to make uniform arrays of carbon nanotubes. Lazareck and his collaborators at Brown and Boston College built on this platform to make their structures. They started with arrays of billions of carbon nanotubes of the same diameter and height evenly spaced on a base of aluminum oxide film. On the tips of the tubes, they introduced a tiny DNA snippet.

This synthetic snippet of DNA carries a sequence of 15 “letters” of genetic code. It was chosen because it attracts only one complement – another sequence made up of a different string of 15 “letters” of genetic code. This second sequence was coupled with a gold nanoparticle, which acted as a chemical delivery system of sorts, bringing the complementary sequences of DNA together. To make the wires, the team put the arrays in a furnace set at 600° C and added zinc arsenide. What grew: Zinc oxide wires measuring about 100-200 nanometers in length.

The team conducted control experiments – introducing gold nanoparticles into the array with no DNA attached or using nanotubes with no DNA at the tips in the nanotube array – and found that very few DNA sequences stuck. And no wires could be made. Lazareck said the key is DNA hybridization, the process of bringing single, complimentary strands of DNA together to reform the double helices that DNA is famous for.

“DNA provides an unparalleled instruction manual because it is so specific,” Lazareck said. “Strands of DNA only join together with their complements. So with this biological specificity, you get manufacturing precision. The functional materials that result have attractive properties that can be applied in many ways.”

“We’re seeing the beginning of the next generation of nanomaterials,” said Xu, senior author of the article. “Many labs are experimenting with self-assembly. And they are making beautiful, but simple, structures. What’s been missing is a way to convey information – the instruction code – to make complex materials.”

Graduate student Teng-Fang Kuo was part of the Brown team along with two former graduate students in the Xu lab – Bradford Taft at Boston College and Sylvain Cloutier at the University of Delaware. Shana Kelley, professor of chemistry at Boston College, contributed to the experiments.

The Air Force Office of Scientific Research, the Office of Naval Research, the Defense Advanced Research Projects Agency and the National Sciences and Engineering Council of Canada funded the research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>