Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor wizardry wards off attacks from the immune system

17.07.2006
Like the fictional wizard Harry Potter, some cancerous tumors seem capable of wrapping themselves in an invisibility cloak. Researchers at Washington University School of Medicine in St. Louis have found that pancreatic tumors hide from the body's immune surveillance by surrounding themselves with cells that make it hard for the immune system to detect them.

The tumor-protecting cells are white blood cells called regulatory T cells, or T-reg for short. Under ordinary circumstances, T-reg cells inhibit immune components responsible for killing unwanted cells -- this allows T-reg cells to help prevent autoimmune reactions.

The scientists discovered that cancerous cells take advantage of T-reg cells' suppressor ability, enlisting them to keep the immune system at bay. Their report appears in the July/August issue of the Journal of Immunotherapy.

"Earlier, we found that T-reg cells are much more prevalent in patients with breast cancer and pancreatic cancer than in healthy patients," says David C. Linehan, M.D., associate professor of surgery and a researcher with the Siteman Cancer Center. "The new findings show that tumors are directly responsible for the increase of T-reg cells and can attract T-reg cells to their vicinity. This could be one way for tumors to evade immune surveillance."

Linehan believes this could explain the failure of many experimental anti-cancer vaccines. Such vaccines are designed to rev up the immune response to cancer cells so that the immune system can attack tumors. But a tumor shielded with T-reg cells could potentially circumvent the immune system's attack and remain safe.

In mice implanted with pancreatic cancer, the researchers demonstrated that tumor growth caused an increase in T-reg cells in both the blood stream and in lymph nodes leading from the tumors.

When the research team blocked a signaling molecule that pancreatic tumors secrete in abundance, T-reg cells were no longer present in the tumor-draining lymph nodes, suggesting that this signaling molecule, referred to as TGF-beta, has an important role in weaving a tumor's cloak of invisibility. Such information could lead to a method for blocking tumors from using T-reg cells for protection. Other research by Linehan and colleagues showed that in mice with pancreatic cancer, simply depleting T-reg cells slowed tumor growth and increased survival time.

"We're looking at several potential ways to interfere with tumor recruitment of T-reg cells," Linehan says. "We'd like to see these findings advance cancer immunotherapy. We want to find a way to actively suppress T-reg cells and at the same time actively evoke an immune response to tumor-specific antigens."

In collaboration with other researchers at the School of Medicine, Linehan is planning to set up a clinical trial that pairs T-reg depletion with anti-cancer vaccine as a therapy for pancreatic cancer patients.

"We're attacking the problem from different angles hoping to translate these findings to our patients," Linehan says. "Right now, no effective treatment exists for pancreatic cancer."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>