Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shooting stars sugar coated

21.12.2001


The Murray meterorite and others may have seeded life on earth.
© New England Meteoritical Services


Maltose: meteorites contain similar sugars.
© Molecular expressions


Meteorites could have sweetened the earliest life.

Sugar from space may have nourished the first life on Earth. Two meteorites contain a range of polyols, organic substances closely related to sugars such as glucose1.

George Cooper of NASA’s Ames Research Center in California and co-workers have found these compounds in the Murchison meteorite, which fell over the Australian town Murchison in 1969, and in the Murray meteorite, that fell to Kentucky in 1950.



Both of these carbon-rich meteorites are thought to be fragments of asteroids, rubble from the building of our Solar System. The Murchison meteorite has been particularly well studied. That it contains amino acids, the molecular building blocks of proteins, helped to establish that these basic components of life’s molecules can be formed in extraterrestrial environments.

This implied that life on Earth might have been seeded by organic compounds falling from the skies, rather than having started from scratch on the young planet. The meteorites’ sugar molecules hint that another essential building block of life may have come from space.

Sugars form part of the backbone of the molecules DNA and RNA, found in all living organisms. They are also life’s primary energy store. Polyols, close chemical relatives of sugars, are used commercially as sugar-free sweeteners such as sorbitol and mannitol.

Cooper’s team found a wide range of polyols in the two meteorites, and some related molecules called sugar acids. The group also spotted one of the simplest pure sugar molecules, dihydroxyacetone.

Sugars were reported in Murray and other meteorites in the 1960s - including glucose, the main sugar made by plants during photosynthesis. But there was a strong possibility that these compounds might have been incorporated into the meteorites by microbial contamination on Earth.

The compounds seen by Cooper and his colleagues are less likely to be terrestrial contaminants because, in the main, they correspond to substances not found in living organisms. Moreover, the relative abundances of different polyols match what would be produced by chemical rather than biochemical processes.

The researchers think these cosmic sweeteners might have been formed in reactions between formaldehyde and water on the asteroid parent bodies of the meteorites. Formaldehyde, a very simple organic molecule, forms in interstellar space by reactions of still simpler molecules such as carbon monoxide.

The findings therefore support a growing realization that, even in the frozen depths of space, lifeless chemistry can arrange the elements into molecular forms well along the road to primitive life.

References
  1. Cooper, G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature, 414, 879 - 883, (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011220/011220-11.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>