Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shooting stars sugar coated

21.12.2001


The Murray meterorite and others may have seeded life on earth.
© New England Meteoritical Services


Maltose: meteorites contain similar sugars.
© Molecular expressions


Meteorites could have sweetened the earliest life.

Sugar from space may have nourished the first life on Earth. Two meteorites contain a range of polyols, organic substances closely related to sugars such as glucose1.

George Cooper of NASA’s Ames Research Center in California and co-workers have found these compounds in the Murchison meteorite, which fell over the Australian town Murchison in 1969, and in the Murray meteorite, that fell to Kentucky in 1950.



Both of these carbon-rich meteorites are thought to be fragments of asteroids, rubble from the building of our Solar System. The Murchison meteorite has been particularly well studied. That it contains amino acids, the molecular building blocks of proteins, helped to establish that these basic components of life’s molecules can be formed in extraterrestrial environments.

This implied that life on Earth might have been seeded by organic compounds falling from the skies, rather than having started from scratch on the young planet. The meteorites’ sugar molecules hint that another essential building block of life may have come from space.

Sugars form part of the backbone of the molecules DNA and RNA, found in all living organisms. They are also life’s primary energy store. Polyols, close chemical relatives of sugars, are used commercially as sugar-free sweeteners such as sorbitol and mannitol.

Cooper’s team found a wide range of polyols in the two meteorites, and some related molecules called sugar acids. The group also spotted one of the simplest pure sugar molecules, dihydroxyacetone.

Sugars were reported in Murray and other meteorites in the 1960s - including glucose, the main sugar made by plants during photosynthesis. But there was a strong possibility that these compounds might have been incorporated into the meteorites by microbial contamination on Earth.

The compounds seen by Cooper and his colleagues are less likely to be terrestrial contaminants because, in the main, they correspond to substances not found in living organisms. Moreover, the relative abundances of different polyols match what would be produced by chemical rather than biochemical processes.

The researchers think these cosmic sweeteners might have been formed in reactions between formaldehyde and water on the asteroid parent bodies of the meteorites. Formaldehyde, a very simple organic molecule, forms in interstellar space by reactions of still simpler molecules such as carbon monoxide.

The findings therefore support a growing realization that, even in the frozen depths of space, lifeless chemistry can arrange the elements into molecular forms well along the road to primitive life.

References
  1. Cooper, G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature, 414, 879 - 883, (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011220/011220-11.html

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>