Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutations Responsible For Rett Syndrome In Females Present Sporadically in Males

14.07.2006
Gene mutations that are responsible for the majority (seventy to eighty percent) of cases of Rett syndrome (RTT) in females are not always lethal in males prior to birth, refuting previous assumptions, and can occur sporadically in infant males without a family history of the disorder. A study published in the journal Neurology reports four sporadic occurrences of MECP2 gene mutations in infant males with progressive encephalopathy. RTT is an X-linked neurodevelopmental disorder that is caused by mutations in the MECP2 gene and is characterized by stagnation of development followed by regression.
In an international collaboration, researchers from the United States and Australia identified and evaluated four non-familial, sporadic occurrences of MECP2 gene mutations. Prior to this study, the majority of reported males with MECP2 mutations had a family history of RTT. Based on the results of this study, MECP2 abnormalities should be evaluated in young infant males who develop progressive encephalopathy including respiratory insufficiency, microcephaly, abnormal muscle tone and various movement disorders, as mutations to the gene may be the source of the infant’s neurological problems.

“Boys born to families with a history of Rett syndrome are examined very closely for MECP2 mutations, but beyond these families, physicians usually do not test for mutations to the gene,” said Walter E. Kaufmann, M.D., study author and research scientist at the Kennedy Krieger Institute in Baltimore. “Infant males with progressive encephalopathy may go undiagnosed because the prevailing assumption is that males with these mutations die before they are born. We’ve found that this is not the case, and encourage neonatologists and pediatricians to consider MECP2 as a possible cause of severe neurological abnormalities.”

All four newly identified cases exhibited common features, including: moderate or severe early postnatal progressive encephalopathy; unexplained central hypoventilation or respiratory insufficiency; abnormal movements; intractable seizures and abnormal tone. Three of the four cases had definitely pathogenic mutations and the fourth was potentially pathogenic. Acute observations and knowledge of the clinical picture of RTT prompted suspicion of MECP2 mutations in the four newly reported cases.

“While the findings of this study represent an important step forward in learning more about MECP2 mutations in infant males, many questions still remain regarding the role of the gene and its contribution to the encephalopathy of Rett syndrome,” said Dr. Gary Goldstein, President and CEO of the Kennedy Krieger Institute. “To help answer these and other questions regarding RTT, Kennedy Krieger has played a leading role in organizing an international consortium of scientists from every major Rett center around the world to conduct clinical studies on the diagnosis and treatment of the disorder.”

The consortium, called ‘RettSearch,’ will provide a forum for scientists to combine research efforts and share results from around the world. With only 15 cases of MECP2 mutations in infant males currently identified worldwide, researchers’ observations are limited. Through the ‘RettSearch’ network, which is being coordinated by Dr. Kaufmann, scientists from Kennedy Krieger and other member institutions hope to identify additional cases and conduct multi-center trials with both males and females with MECP2 mutations and RTT.

About Rett Syndrome

Rett Syndrome (RTT) is a neurological disorder often misdiagnosed as autism, cerebral palsy or non-specified developmental delay caused by a defective regulatory MECP2 gene found on the X chromosome. The disorder is seen almost exclusively in females. Unlike females, who have two X-chromosomes, males have an X and a Y chromosome. Because males lack a "backup" copy of the X chromosome that can compensate for a defective one, mutations in MECP2 are often lethal to the male fetus. This is why RTT is found overwhelmingly in females. RTT occurs in a variety of racial and ethnic groups worldwide and is now known to occur in 1:10,000 to 1:23,000 female births, but incidence may be far greater as new genetic evidence is discovered.

Development appears normal until 6-18 months of age, followed by loss of acquired speech and hand skills, slowing of head growth and development of stereotyped repetitive hand movements such as hand washing, hand wringing, hand tapping, hand clapping and hand mouthing. Stereotyped hand movements may change over time and additional problems may include seizures, breathing irregularities (hyperventilation and apnea), teeth grinding and curvature of the spine (scoliosis).

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 12,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis.

Emily Butler | EurekAlert!
Further information:
http://www.kennedykrieger.org.

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>