Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutations Responsible For Rett Syndrome In Females Present Sporadically in Males

14.07.2006
Gene mutations that are responsible for the majority (seventy to eighty percent) of cases of Rett syndrome (RTT) in females are not always lethal in males prior to birth, refuting previous assumptions, and can occur sporadically in infant males without a family history of the disorder. A study published in the journal Neurology reports four sporadic occurrences of MECP2 gene mutations in infant males with progressive encephalopathy. RTT is an X-linked neurodevelopmental disorder that is caused by mutations in the MECP2 gene and is characterized by stagnation of development followed by regression.
In an international collaboration, researchers from the United States and Australia identified and evaluated four non-familial, sporadic occurrences of MECP2 gene mutations. Prior to this study, the majority of reported males with MECP2 mutations had a family history of RTT. Based on the results of this study, MECP2 abnormalities should be evaluated in young infant males who develop progressive encephalopathy including respiratory insufficiency, microcephaly, abnormal muscle tone and various movement disorders, as mutations to the gene may be the source of the infant’s neurological problems.

“Boys born to families with a history of Rett syndrome are examined very closely for MECP2 mutations, but beyond these families, physicians usually do not test for mutations to the gene,” said Walter E. Kaufmann, M.D., study author and research scientist at the Kennedy Krieger Institute in Baltimore. “Infant males with progressive encephalopathy may go undiagnosed because the prevailing assumption is that males with these mutations die before they are born. We’ve found that this is not the case, and encourage neonatologists and pediatricians to consider MECP2 as a possible cause of severe neurological abnormalities.”

All four newly identified cases exhibited common features, including: moderate or severe early postnatal progressive encephalopathy; unexplained central hypoventilation or respiratory insufficiency; abnormal movements; intractable seizures and abnormal tone. Three of the four cases had definitely pathogenic mutations and the fourth was potentially pathogenic. Acute observations and knowledge of the clinical picture of RTT prompted suspicion of MECP2 mutations in the four newly reported cases.

“While the findings of this study represent an important step forward in learning more about MECP2 mutations in infant males, many questions still remain regarding the role of the gene and its contribution to the encephalopathy of Rett syndrome,” said Dr. Gary Goldstein, President and CEO of the Kennedy Krieger Institute. “To help answer these and other questions regarding RTT, Kennedy Krieger has played a leading role in organizing an international consortium of scientists from every major Rett center around the world to conduct clinical studies on the diagnosis and treatment of the disorder.”

The consortium, called ‘RettSearch,’ will provide a forum for scientists to combine research efforts and share results from around the world. With only 15 cases of MECP2 mutations in infant males currently identified worldwide, researchers’ observations are limited. Through the ‘RettSearch’ network, which is being coordinated by Dr. Kaufmann, scientists from Kennedy Krieger and other member institutions hope to identify additional cases and conduct multi-center trials with both males and females with MECP2 mutations and RTT.

About Rett Syndrome

Rett Syndrome (RTT) is a neurological disorder often misdiagnosed as autism, cerebral palsy or non-specified developmental delay caused by a defective regulatory MECP2 gene found on the X chromosome. The disorder is seen almost exclusively in females. Unlike females, who have two X-chromosomes, males have an X and a Y chromosome. Because males lack a "backup" copy of the X chromosome that can compensate for a defective one, mutations in MECP2 are often lethal to the male fetus. This is why RTT is found overwhelmingly in females. RTT occurs in a variety of racial and ethnic groups worldwide and is now known to occur in 1:10,000 to 1:23,000 female births, but incidence may be far greater as new genetic evidence is discovered.

Development appears normal until 6-18 months of age, followed by loss of acquired speech and hand skills, slowing of head growth and development of stereotyped repetitive hand movements such as hand washing, hand wringing, hand tapping, hand clapping and hand mouthing. Stereotyped hand movements may change over time and additional problems may include seizures, breathing irregularities (hyperventilation and apnea), teeth grinding and curvature of the spine (scoliosis).

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 12,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis.

Emily Butler | EurekAlert!
Further information:
http://www.kennedykrieger.org.

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>