Bacteria give up secrets in war waged on plants

Under study is the bacterial pathogen Pseudomonas syringae, better known as the disease agent of bacterial speck. The pathogen reared its speckled head in tomatoes, causing serious crop loss. Scientist Sheng Yang He describes using P. syringae in the laboratory plant Arabidopsis to get a better understanding of how bacteria set up camp and destroy the plant's ability to fight infection in the July 14 issue of Science Magazine. He is an MSU professor of plant biology, plant pathology, and microbiology and molecular genetics.

The secret weapon: a bacterium's protein targets a plant protein that serves as a line of defense against illness, said Kinya Nomura, a researcher in He's lab and first author on the paper.

“The bacteria targets and disables a plant's defense protein, so they can get in and multiply,” Nomura said. “It's a very nice strategy for bacteria, very clever.”

The P. syringae virulence protein, called HopM1, has been the mechanism mystery. Plant diseases, ranging from bacterial speck in tomatoes and fire blight in apples and pears can devastate crops. Human bacterial pathogens use a similar basic principle to cause diseases.

“Bacterial diseases are generally difficult to control,” said He, who works in the MSU-Department of Energy Plant Research Laboratory. “Molecular studies such as this one may help develop novel disease control measures in the future.”

Media Contact

Sue Nichols EurekAlert!

More Information:

http://www.msu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors