Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zero grip for bacteria

14.07.2006
Patients suffering from kidney problems cannot filter the blood to remove body wastes. Some even have to go to the hospital several times a week to undergo haemodialysis (cleansing of the blood) – something which is extremely time-consuming. When a home dialysis treatment based on a catheter implanted in the abdominal cavity (PD-dialysis) became available, many patients were no longer so reliant on visits. However, bacteria and infections have been a major problem in PD, in many cases resulting in early catheter removal.

In 2001, six research partners (the Martin Luther University of Halle, the German research institute iba, the University of Genova, SINTEF, the Dutch catheter manufacturer Humeca and the Dutch test laboratory BioScan) joined forces to develop a surface to reduce bacterial adhesion and growth. The new coating may be used on all types of equipment where low bacterial adhesion to the surface is desired.

“We have used medical catheters as an example and have conducted all our tests on this product, but this research would be equally beneficial for production equipment in the food industry,” says SINTEF Research Manager Ruth Baumberger Schmid.

Special molecule

The University of Halle has a patent on the extraction and use of a special molecule for coating. The molecule is a fatty substance (lipid) that is produced by bacteria deep in coal mines. The research team based its work on this fatty substance. It was already known that the lipid had properties that were beneficial for medical use: it does not create any toxic or allergic reaction or injury to either tissue or blood.

“The aspects of this lipid are that it consists of a double-chain and is rod-shaped, as well as being chemically and biologically stable,” says Schmid. “A tight layer of molecules will resemble a biological membrane, for example a cell wall. We tried to imitate a biological surface to which bacteria could not attach.”

Chemists at work

The catheter itself is made of silicon, a material known for being stable and harmless, because it does not reactwith other substances in the body. In order to bind the coating to the surface, the research scientists had to activate the silicon. One of the major challenges was to fasten the coating to the silicon without altering the silicon’s positive properties.

“As the lipid consists of a double-chain with reactive “heads” on both ends, we could bind the lipid to the catheter wall via the head at one end and at the same time attach other molecules to the “head” on the opposite side,” says Schmid. The research scientists tested different types of chemistry on the outermost “head”, and then prepared tailor-made surfaces with many different properties, including positive charge, negative charge, water-attracting, and water-repelling.”

The next step was to conduct a host of physical and biological tests at iba and BioScan on the various surfaces. The tests showed a pattern and confirmed that the research scientists had been successful: With a new surface on the catheter, the bacterial flora was reduced by half, and when favourable chemistry was applied to the molecule’s outermost heads, the reduction reached 75 percent. Moreover, no negative effects were observed when the surface came in contact with living organisms.

Further development

The University of Halle and iba have now established a company in Germany to find other applications for the lipids in addition to the catheter. SINTEF, iba and the University of Halle have also met with a South African mining company, which has lipids as a by-product.

“There is good and complementary co-operation among the three partners,” says Schmid. “While Halle conducts basic research on the lipid and iba handles the biological testing, we are focussing on applied research and can expand product offerings to include industrial applications.”

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>