Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zero grip for bacteria

14.07.2006
Patients suffering from kidney problems cannot filter the blood to remove body wastes. Some even have to go to the hospital several times a week to undergo haemodialysis (cleansing of the blood) – something which is extremely time-consuming. When a home dialysis treatment based on a catheter implanted in the abdominal cavity (PD-dialysis) became available, many patients were no longer so reliant on visits. However, bacteria and infections have been a major problem in PD, in many cases resulting in early catheter removal.

In 2001, six research partners (the Martin Luther University of Halle, the German research institute iba, the University of Genova, SINTEF, the Dutch catheter manufacturer Humeca and the Dutch test laboratory BioScan) joined forces to develop a surface to reduce bacterial adhesion and growth. The new coating may be used on all types of equipment where low bacterial adhesion to the surface is desired.

“We have used medical catheters as an example and have conducted all our tests on this product, but this research would be equally beneficial for production equipment in the food industry,” says SINTEF Research Manager Ruth Baumberger Schmid.

Special molecule

The University of Halle has a patent on the extraction and use of a special molecule for coating. The molecule is a fatty substance (lipid) that is produced by bacteria deep in coal mines. The research team based its work on this fatty substance. It was already known that the lipid had properties that were beneficial for medical use: it does not create any toxic or allergic reaction or injury to either tissue or blood.

“The aspects of this lipid are that it consists of a double-chain and is rod-shaped, as well as being chemically and biologically stable,” says Schmid. “A tight layer of molecules will resemble a biological membrane, for example a cell wall. We tried to imitate a biological surface to which bacteria could not attach.”

Chemists at work

The catheter itself is made of silicon, a material known for being stable and harmless, because it does not reactwith other substances in the body. In order to bind the coating to the surface, the research scientists had to activate the silicon. One of the major challenges was to fasten the coating to the silicon without altering the silicon’s positive properties.

“As the lipid consists of a double-chain with reactive “heads” on both ends, we could bind the lipid to the catheter wall via the head at one end and at the same time attach other molecules to the “head” on the opposite side,” says Schmid. The research scientists tested different types of chemistry on the outermost “head”, and then prepared tailor-made surfaces with many different properties, including positive charge, negative charge, water-attracting, and water-repelling.”

The next step was to conduct a host of physical and biological tests at iba and BioScan on the various surfaces. The tests showed a pattern and confirmed that the research scientists had been successful: With a new surface on the catheter, the bacterial flora was reduced by half, and when favourable chemistry was applied to the molecule’s outermost heads, the reduction reached 75 percent. Moreover, no negative effects were observed when the surface came in contact with living organisms.

Further development

The University of Halle and iba have now established a company in Germany to find other applications for the lipids in addition to the catheter. SINTEF, iba and the University of Halle have also met with a South African mining company, which has lipids as a by-product.

“There is good and complementary co-operation among the three partners,” says Schmid. “While Halle conducts basic research on the lipid and iba handles the biological testing, we are focussing on applied research and can expand product offerings to include industrial applications.”

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>