Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step closer to understanding how calcium controls our bodies

14.07.2006
Researchers at the University of Cambridge have taken a major step forward in unravelling one of the key control mechanisms of the human body. A paper published today (July 14) in the journal Science shows how scientists, funded in part by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), have made significant progress in understanding how cells are able to regulate calcium signals. This improved understanding could help improve drug targeting.

Calcium signals control almost every activity in the human body, from fertilization to cell death and everything between, including every beat of the heart. The researchers have found that just 2-3 calcium channels, from among the many thousands present on the surface of a cell, are responsible for much of the calcium signal that regulates the activity of immune cells. The 2-3 channels are formed by inositol trisphosphate (IP3) receptors on the membrane that surrounds the cell. Despite being the cellular equivalent of a needle in a haystack, the team discovered that these 2-3 channels make a substantial contribution to calcium signalling.


Cells expressing inositol triphosphate receptors with an engineered binding site stained with snake venom

The membranes of cells are like dams holding back a flood of calcium. Channels within these membranes are the sluice gates that cells regulate to allow controlled entry of calcium. Too much calcium and the cell dies. But just as the water from a dam may be directed via the sluice gates to a fish ladder or a generator, then so the calcium passing through channels can be sent to different intracellular proteins to bring about different cellular responses. In this way, the same intracellular messenger, calcium, can be used to control all sorts of things without confusing the cell. The new research shows that IP3 channels, originally thought to be found only in membranes within the cell, such as the endoplasmic reticulum, are also found in its external membrane.

The researchers believe that this new role for IP3 receptors on the cell membrane, additional to their established role within the cell, paves the way to addressing the mechanisms that allow calcium to so effectively regulate so many cellular activities. Such an understanding could give a better idea of processes governing cell growth and development and could eventually lead to more sophisticated drug targeting.

The scientists built on work from others that aimed to develop new treatments for venomous snake-bites, by making short peptides that specifically bind to the venom. Using molecular biological methods they incorporated the same peptide into the IP3 receptor and demonstrated that it was now regulated by the snake venom.

Professor Colin Taylor led the research at the University of Cambridge’s Department of Pharmacology. He said: “Every schoolchild knows that calcium is the element that forms our teeth and bones, but it also has this key and very dynamic role as a controlling signal within every cell of the human body. Everything from the beating of the heart to cell division and cell death is controlled by calcium. The key question is how cells manage to use calcium to control so much without getting confused. It’s rather like trying to listen in to just one conversation at a noisy party. Our research brings us another step forward to understanding how cells regulate the inward flow of calcium. That is important, because when we use calcium in this way as a signal, we invite the enemy within and unless we keep it under very tight control the calcium will kill the cell.

“One of the more intriguing features of the work is the reliability with which these cells incorporate such small numbers of IP3 receptors into the membrane. Even if we force the cells to produce more IP3 receptors, they still place just 2-3 of them in the plasma membrane, and they always seem to get it right. What we really don’t understand is how they do it. The challenge now is to find out.”

The research published in Science is based on work funded by BBSRC and the Wellcome Trust.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>