Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step closer to understanding how calcium controls our bodies

14.07.2006
Researchers at the University of Cambridge have taken a major step forward in unravelling one of the key control mechanisms of the human body. A paper published today (July 14) in the journal Science shows how scientists, funded in part by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), have made significant progress in understanding how cells are able to regulate calcium signals. This improved understanding could help improve drug targeting.

Calcium signals control almost every activity in the human body, from fertilization to cell death and everything between, including every beat of the heart. The researchers have found that just 2-3 calcium channels, from among the many thousands present on the surface of a cell, are responsible for much of the calcium signal that regulates the activity of immune cells. The 2-3 channels are formed by inositol trisphosphate (IP3) receptors on the membrane that surrounds the cell. Despite being the cellular equivalent of a needle in a haystack, the team discovered that these 2-3 channels make a substantial contribution to calcium signalling.


Cells expressing inositol triphosphate receptors with an engineered binding site stained with snake venom

The membranes of cells are like dams holding back a flood of calcium. Channels within these membranes are the sluice gates that cells regulate to allow controlled entry of calcium. Too much calcium and the cell dies. But just as the water from a dam may be directed via the sluice gates to a fish ladder or a generator, then so the calcium passing through channels can be sent to different intracellular proteins to bring about different cellular responses. In this way, the same intracellular messenger, calcium, can be used to control all sorts of things without confusing the cell. The new research shows that IP3 channels, originally thought to be found only in membranes within the cell, such as the endoplasmic reticulum, are also found in its external membrane.

The researchers believe that this new role for IP3 receptors on the cell membrane, additional to their established role within the cell, paves the way to addressing the mechanisms that allow calcium to so effectively regulate so many cellular activities. Such an understanding could give a better idea of processes governing cell growth and development and could eventually lead to more sophisticated drug targeting.

The scientists built on work from others that aimed to develop new treatments for venomous snake-bites, by making short peptides that specifically bind to the venom. Using molecular biological methods they incorporated the same peptide into the IP3 receptor and demonstrated that it was now regulated by the snake venom.

Professor Colin Taylor led the research at the University of Cambridge’s Department of Pharmacology. He said: “Every schoolchild knows that calcium is the element that forms our teeth and bones, but it also has this key and very dynamic role as a controlling signal within every cell of the human body. Everything from the beating of the heart to cell division and cell death is controlled by calcium. The key question is how cells manage to use calcium to control so much without getting confused. It’s rather like trying to listen in to just one conversation at a noisy party. Our research brings us another step forward to understanding how cells regulate the inward flow of calcium. That is important, because when we use calcium in this way as a signal, we invite the enemy within and unless we keep it under very tight control the calcium will kill the cell.

“One of the more intriguing features of the work is the reliability with which these cells incorporate such small numbers of IP3 receptors into the membrane. Even if we force the cells to produce more IP3 receptors, they still place just 2-3 of them in the plasma membrane, and they always seem to get it right. What we really don’t understand is how they do it. The challenge now is to find out.”

The research published in Science is based on work funded by BBSRC and the Wellcome Trust.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>