Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Communication Signal for Tissue Development

13.07.2006
Researchers at Rensselaer Polytechnic Institute have discovered a communication signal between cells that plays an important role in cell adhesion and detachment. The finding provides new information about how cells and tissues determine when to let go from surfaces during new growth, according to the researchers.

“Our discovery of this new signaling pathway adds to fundamental information about how cells work together during the remodeling of tissues and organs,” said Andrea Page-McCaw, assistant professor of biology at Rensselaer. “This finding also may provide clues about the basic mechanisms of inflammation and wound healing in vertebrates.”

Page-McCaw’s laboratory studies the fruit fly as a model system to better understand a group of genetic enzymes called matrix metalloproteinases (MMPs). Fruit flies have two distinct MMPs, compared to 22 such enzymes found in humans and mice. In previous work, Page-McCaw found that both MMPs present in fruit flies are critical to their survival.

“Although MMP enzymes have been linked to disease progression, their normal function is to help in tissue growth and wound healing,” Page-McCaw said. “MMP research eventually could lead to therapeutics for a range of illnesses, including cancer and arthritis.”

Page-McCaw studies development and remodeling of the airway system, or tracheae, in fruit fly larvae with normal and mutant MMPs to determine how those genes contribute to normal function. In this work, she and her colleagues found that one of the MMPs chops off a piece of a protein called Ninjurin A, which is located at the surfaces of cells. The liberated piece of Ninjurin A protein then signals to other cells that it is time to detach from their surface, both in isolated cells grown in culture and in whole flies. When tracheal cells fail to detach from the insect exoskeleton, the tracheae do not grow properly and break.

The findings are currently available online in advance of print publication July 15 by the journal Genes & Development. The paper is titled “An MMP Liberates the Ninjurin A Ectodomain to Signal a Loss of Cell Adhesion.”

The research is led by Page-McCaw and includes Shuning Zhang, doctoral student at Rensselaer, and Bernadette Glasheen and Gyna Sroga, research specialists at Rensselaer. This work was initiated by Page-McCaw during her fellowship at the University of California at Berkeley, where she was assisted by Gina Dailey and Elaine Kwan.

Biotechnology and Interdisciplinary Studies at Rensselaer

At Rensselaer, faculty and students in diverse academic and research disciplines are collaborating at the intersection of the life sciences and engineering to encourage discovery and innovation. Rensselaer’s four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students focused on the application of engineering and physical and information sciences to the life sciences. Ranked among the world’s most advanced research facilities, Rensselaer’s Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research and world-class programs and symposia.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>