Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a face: A new and earlier marker of neural crest development

12.07.2006
The fate of cells that go on to form the face, skull and nerve centers of the head and neck in vertebrates is determined much earlier in development than previously thought, and is independent of interaction with other forming tissues, according to a recent study published in the journal Nature.

The collaborators at Yale and Caltech demonstrate with three different technologies -- immunostaining of proteins, in situ hybridization and multiplex RT-PCR of mRNAs -- that formation of neural crest cells in chick embryos is independent of both mesoderm and neural tissues. They also identify, Pax7, as an early marker of neural crest formation and prove that its function is required in the earliest stages of development.


Early chick embryo with Pax-7 (red) designating neural crest progenitor cells. Credit: Martín García-Castro

The neural crest is a population of stem cells that migrate extensively during development and give rise to many derivatives, including most of the bone and cartilage of the head skeleton, pigment cells of the skin, and cells of the peripheral nervous system.

In humans, cleft palate, heart valve malformations and various tumors are among the common malformations associated with disruption of neural crest development.

Chick embryos have well-characterized stages and are a valuable model for examining vertebrate development. While it was known that the ability to form neural crest cells declines after "stage 10," the researchers were seeking the earliest conditions surrounding formation of these important stem cells.

"Understanding the origin of neural crest cells -- where, when and how they arise -- is a critical step if we are to manipulate them for therapeutic purposes," said Martín García-Castro, assistant professor of molecular, cellular and developmental biology at Yale and principal investigator on the study. "Implications of these basic questions of biology and development reach far beyond these chicken and eggs."

Based on work from the 1940's before molecular tools were available, the neural crest was thought to form by interactions between neural and non-neural cell layers. "We show in this work that neural crest stem cell precursors are designated very early in development -- as early as the gastrula stages -- and in an independent fashion from those other tissues," said Martín García-Castro.

The researchers grew grafts of cells from "stage 3" chick embryos, before the neural plate formed, in non-inducing cultures. Surprisingly, restricted regions of the embryo generated both migrating neural crest cells and their derivative cell types, without any interaction with neural or mesodermal tissues.

"Our results are contrary to current text-book models and suggest that different modes of neural crest induction operate during development," said Martín García-Castro. "Interestingly, the one we have uncovered is related to the early, cranial neural crest cells, the only ones in higher vertebrates that retain bone and cartilage forming potential."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.biology.yale.edu/facultystaff/garcia-castro.html
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>