Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live wires

11.07.2006
A microbiologist discovers our planet is hard-wired with electricity-producing bacteria

When Yuri Gorby discovered that a microbe which transforms toxic metals can sprout tiny electrically conductive wires from its cell membrane, he reasoned this anatomical oddity and its metal-changing physiology must be related.

A colleague who had heard Gorby's presentation at a scientific meeting later reported that he, too, was able to coax nanowires from another so-called metal-reducing bacteria species and futher suggested the wires, called pili, could be used to bioengineer electrical devices.

It now turns out that not only are the wires and their ability to alter metal connected--but that many other bacteria, including species involved in fermentation and photosynthesis, can also form wires under a variety of environmental conditions.

"Earth appears to be hard-wired," said Gorby, staff scientist at the Department of Energy's Pacific Northwest National Laboratory, who documents the seeming ubiquity of electrically conductive microbial life in the July 10 advance online Proceedings of the National Academy of Science.

In a series of experiments, Gorby and colleagues induced nanowires in a variety of bacteria and demonstrated that they were electrically conductive. The bacterial nanowires were as small as 10 nanometers in diameter and formed bundles as wide as 150 nanometers. They grew to be tens of microns to hundreds of microns long.

The common thread involved depriving a microbe of something it needed to shed excess energy in the form of electrons. For example, Shewanella, of interest in environmental cleanup for its ability to hasten the weathering of toxic metals into benign ones, requires oxygen or other electron acceptors for respiration, whereas Synechocystis, a cyanobactetrium, combines electrons with carbon dioxide during photosynthesis.

Bereft of these "electron acceptors," bacterial nanowires "will literally reach out and connect cells from one to another to form an electrically integrated community," Gorby said.

"The physiological and ecological implications for these interactions are not currently known," he said, "but the effect is suggestive of a highly organized form of energy distribution among members of the oldest and most sustainable life forms on the planet."

In one clever twist, Gorby grew pili from mutant strains developed by collaborators that were unable to produce select electron transport components called cytochromes. Sure enough, the nanowires of the mutants were poor conductors.

"These implicate cytochromes as the electrically conductive components of nanowires, although this has yet to be conclusively demonstrated," Gorby said.

To measure currents as precisely as possible, Gorby and colleagues from the University of Southern California have built a microbial fuel cell laboratory at PNNL. The small bacteria-powered batteries, cultured under electron-acceptor limitations and fueled by lactate or light, now produce very little power, as measured by a voltmeter hooked to a laptop computer.

Co-author and PNNL scientist Jeff Mclean, who manages the microbial fuel cell laboratory, said that small changes in fuel cell design and culture conditions have already shown large improvements in the efficiency of the fuel cells. For example, so-called biofilms--a highly interconnected bacterial community--put out much more energy than other configurations.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>