Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live wires

11.07.2006
A microbiologist discovers our planet is hard-wired with electricity-producing bacteria

When Yuri Gorby discovered that a microbe which transforms toxic metals can sprout tiny electrically conductive wires from its cell membrane, he reasoned this anatomical oddity and its metal-changing physiology must be related.

A colleague who had heard Gorby's presentation at a scientific meeting later reported that he, too, was able to coax nanowires from another so-called metal-reducing bacteria species and futher suggested the wires, called pili, could be used to bioengineer electrical devices.

It now turns out that not only are the wires and their ability to alter metal connected--but that many other bacteria, including species involved in fermentation and photosynthesis, can also form wires under a variety of environmental conditions.

"Earth appears to be hard-wired," said Gorby, staff scientist at the Department of Energy's Pacific Northwest National Laboratory, who documents the seeming ubiquity of electrically conductive microbial life in the July 10 advance online Proceedings of the National Academy of Science.

In a series of experiments, Gorby and colleagues induced nanowires in a variety of bacteria and demonstrated that they were electrically conductive. The bacterial nanowires were as small as 10 nanometers in diameter and formed bundles as wide as 150 nanometers. They grew to be tens of microns to hundreds of microns long.

The common thread involved depriving a microbe of something it needed to shed excess energy in the form of electrons. For example, Shewanella, of interest in environmental cleanup for its ability to hasten the weathering of toxic metals into benign ones, requires oxygen or other electron acceptors for respiration, whereas Synechocystis, a cyanobactetrium, combines electrons with carbon dioxide during photosynthesis.

Bereft of these "electron acceptors," bacterial nanowires "will literally reach out and connect cells from one to another to form an electrically integrated community," Gorby said.

"The physiological and ecological implications for these interactions are not currently known," he said, "but the effect is suggestive of a highly organized form of energy distribution among members of the oldest and most sustainable life forms on the planet."

In one clever twist, Gorby grew pili from mutant strains developed by collaborators that were unable to produce select electron transport components called cytochromes. Sure enough, the nanowires of the mutants were poor conductors.

"These implicate cytochromes as the electrically conductive components of nanowires, although this has yet to be conclusively demonstrated," Gorby said.

To measure currents as precisely as possible, Gorby and colleagues from the University of Southern California have built a microbial fuel cell laboratory at PNNL. The small bacteria-powered batteries, cultured under electron-acceptor limitations and fueled by lactate or light, now produce very little power, as measured by a voltmeter hooked to a laptop computer.

Co-author and PNNL scientist Jeff Mclean, who manages the microbial fuel cell laboratory, said that small changes in fuel cell design and culture conditions have already shown large improvements in the efficiency of the fuel cells. For example, so-called biofilms--a highly interconnected bacterial community--put out much more energy than other configurations.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>