Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Live wires

A microbiologist discovers our planet is hard-wired with electricity-producing bacteria

When Yuri Gorby discovered that a microbe which transforms toxic metals can sprout tiny electrically conductive wires from its cell membrane, he reasoned this anatomical oddity and its metal-changing physiology must be related.

A colleague who had heard Gorby's presentation at a scientific meeting later reported that he, too, was able to coax nanowires from another so-called metal-reducing bacteria species and futher suggested the wires, called pili, could be used to bioengineer electrical devices.

It now turns out that not only are the wires and their ability to alter metal connected--but that many other bacteria, including species involved in fermentation and photosynthesis, can also form wires under a variety of environmental conditions.

"Earth appears to be hard-wired," said Gorby, staff scientist at the Department of Energy's Pacific Northwest National Laboratory, who documents the seeming ubiquity of electrically conductive microbial life in the July 10 advance online Proceedings of the National Academy of Science.

In a series of experiments, Gorby and colleagues induced nanowires in a variety of bacteria and demonstrated that they were electrically conductive. The bacterial nanowires were as small as 10 nanometers in diameter and formed bundles as wide as 150 nanometers. They grew to be tens of microns to hundreds of microns long.

The common thread involved depriving a microbe of something it needed to shed excess energy in the form of electrons. For example, Shewanella, of interest in environmental cleanup for its ability to hasten the weathering of toxic metals into benign ones, requires oxygen or other electron acceptors for respiration, whereas Synechocystis, a cyanobactetrium, combines electrons with carbon dioxide during photosynthesis.

Bereft of these "electron acceptors," bacterial nanowires "will literally reach out and connect cells from one to another to form an electrically integrated community," Gorby said.

"The physiological and ecological implications for these interactions are not currently known," he said, "but the effect is suggestive of a highly organized form of energy distribution among members of the oldest and most sustainable life forms on the planet."

In one clever twist, Gorby grew pili from mutant strains developed by collaborators that were unable to produce select electron transport components called cytochromes. Sure enough, the nanowires of the mutants were poor conductors.

"These implicate cytochromes as the electrically conductive components of nanowires, although this has yet to be conclusively demonstrated," Gorby said.

To measure currents as precisely as possible, Gorby and colleagues from the University of Southern California have built a microbial fuel cell laboratory at PNNL. The small bacteria-powered batteries, cultured under electron-acceptor limitations and fueled by lactate or light, now produce very little power, as measured by a voltmeter hooked to a laptop computer.

Co-author and PNNL scientist Jeff Mclean, who manages the microbial fuel cell laboratory, said that small changes in fuel cell design and culture conditions have already shown large improvements in the efficiency of the fuel cells. For example, so-called biofilms--a highly interconnected bacterial community--put out much more energy than other configurations.

Bill Cannon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>