Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA researchers discover 'episodic-like' memory in rats

11.07.2006
Animal model could assist Alzheimer's disease research

Human memory is a mental scrapbook, filled with moments of luminous happiness or unforgettable sorrow. We remember the day we said "I do," and the first glimpses of our children and grandchildren. But among the elderly, pages often go missing from the scrapbooks of their memory, and those with Alzheimer's disease or amnesia may have nothing left of their memorable lives at all.

Researchers have long sought animal models to help them study memory and have repeatedly asked one question: Are humans the only ones who remember unique, personal past experiences, or can animals do it, too? Now, researchers from the University of Georgia are closer to solving the problem.

Psychologists from UGA report in the new issue of Current Biology that laboratory rats have a detailed representation of remembered events and therefore also likely have episodic-like memory. The finding gives researchers an animal model that could help in understanding how humans with Alzheimer's or amnesia lose their memory.

"Understanding whether animals have this kind of memory has been a challenge for years," said Jonathon Crystal, an associate professor of psychology who directed the research. His co-author on the paper was Stephanie Babb, a former Ph.D. student at UGA and now a post-doctoral fellow at the University of Texas Medical School in Houston. "What we have always needed is a model animal with which we can ask questions about the neural basis of episodic memory."

The new findings could be a first step toward testing new drugs in rats for humans with diseases such as Alzheimer's or amnesia.

Crystal and Babb used a radial maze, an eight-armed device with a central hub, in which laboratory rats were able to search for specific foods and relate their presence or absence to remembered cues. Each arm has a door at the junction with the central hub so the rats can choose which of the eight arms to go into.

"If rats have specific information about the content of events they experienced in the past, together with the knowledge of when and where those events occurred, then they should adjust their behavior to the temporal and spatial constraints of food availability," said Crystal. "To address this question, we trained rats to discriminate what, where and when they encountered food."

To do this, they provided rats with access to locations baited with distinctive flavors such as grape or raspberry and non-distinctive flavors such as the chow the animals are usually fed. The researchers then replenished the food locations with distinctive flavors after a long but not a short delay and didn't replenish the locations with non-distinctive flavors at all.

They further complicated the rats' choices by either pre-feeding them with the distinctive flavor so they would be full or by pairing it with nauseating lithium chloride. This "devalued" selected distinctive flavors. To the researchers' surprise, the rats then selectively decreased their return visits to the "devalued distinctive flavor" while continuing to return regularly to the flavors that hadn't been so devalued.

By replicating the tests, the psychologists were able to show conclusively that the rats possessed "episodic-like memory," something that had never been proved in any laboratory mammal, though such behavior has been demonstrated in scrub jays.

Earlier research by Crystal and numerous other researchers has shown that rats don't navigate well by smell, and the UGA experiments were designed to rule out other reasons why the rats returned to food sources in the radial maze at certain times.

"The most surprising thing to us was that the rats solved the problem," said Crystal. "People have been trying to document episodic-like memory in rats for a while, and they haven't succeeded. This is basic science that has the potential to translate into the clinical realm." (Other scientists have also long attempted to prove such memory in monkeys and have not yet succeeded in showing that, either.)

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>