Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UGA researchers discover 'episodic-like' memory in rats

Animal model could assist Alzheimer's disease research

Human memory is a mental scrapbook, filled with moments of luminous happiness or unforgettable sorrow. We remember the day we said "I do," and the first glimpses of our children and grandchildren. But among the elderly, pages often go missing from the scrapbooks of their memory, and those with Alzheimer's disease or amnesia may have nothing left of their memorable lives at all.

Researchers have long sought animal models to help them study memory and have repeatedly asked one question: Are humans the only ones who remember unique, personal past experiences, or can animals do it, too? Now, researchers from the University of Georgia are closer to solving the problem.

Psychologists from UGA report in the new issue of Current Biology that laboratory rats have a detailed representation of remembered events and therefore also likely have episodic-like memory. The finding gives researchers an animal model that could help in understanding how humans with Alzheimer's or amnesia lose their memory.

"Understanding whether animals have this kind of memory has been a challenge for years," said Jonathon Crystal, an associate professor of psychology who directed the research. His co-author on the paper was Stephanie Babb, a former Ph.D. student at UGA and now a post-doctoral fellow at the University of Texas Medical School in Houston. "What we have always needed is a model animal with which we can ask questions about the neural basis of episodic memory."

The new findings could be a first step toward testing new drugs in rats for humans with diseases such as Alzheimer's or amnesia.

Crystal and Babb used a radial maze, an eight-armed device with a central hub, in which laboratory rats were able to search for specific foods and relate their presence or absence to remembered cues. Each arm has a door at the junction with the central hub so the rats can choose which of the eight arms to go into.

"If rats have specific information about the content of events they experienced in the past, together with the knowledge of when and where those events occurred, then they should adjust their behavior to the temporal and spatial constraints of food availability," said Crystal. "To address this question, we trained rats to discriminate what, where and when they encountered food."

To do this, they provided rats with access to locations baited with distinctive flavors such as grape or raspberry and non-distinctive flavors such as the chow the animals are usually fed. The researchers then replenished the food locations with distinctive flavors after a long but not a short delay and didn't replenish the locations with non-distinctive flavors at all.

They further complicated the rats' choices by either pre-feeding them with the distinctive flavor so they would be full or by pairing it with nauseating lithium chloride. This "devalued" selected distinctive flavors. To the researchers' surprise, the rats then selectively decreased their return visits to the "devalued distinctive flavor" while continuing to return regularly to the flavors that hadn't been so devalued.

By replicating the tests, the psychologists were able to show conclusively that the rats possessed "episodic-like memory," something that had never been proved in any laboratory mammal, though such behavior has been demonstrated in scrub jays.

Earlier research by Crystal and numerous other researchers has shown that rats don't navigate well by smell, and the UGA experiments were designed to rule out other reasons why the rats returned to food sources in the radial maze at certain times.

"The most surprising thing to us was that the rats solved the problem," said Crystal. "People have been trying to document episodic-like memory in rats for a while, and they haven't succeeded. This is basic science that has the potential to translate into the clinical realm." (Other scientists have also long attempted to prove such memory in monkeys and have not yet succeeded in showing that, either.)

Kim Carlyle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>