Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds same genes act differently in males and females

11.07.2006
Discovery may explain gender gap in disease risk, drug response
Scientists may have revealed the origin of the battle of the sexes – in our genes.

UCLA researchers report that thousands of genes behave differently in the same organs of males and females – something never detected to this degree. Published in the August issue of Genome Research, the study sheds light on why the same disease often strikes males and females differently, and why the genders may respond differently to the same drug.

"We previously had no good understanding of why the sexes vary in their relationship to different diseases," explained Xia Yang, Ph.D., first author and postdoctoral fellow in cardiology at the David Geffen School of Medicine at UCLA. "Our study discovered a genetic disparity that may explain why males and females diverge in terms of disease risk, rate and severity."

"This research holds important implications for understanding disorders such as diabetes, heart disease and obesity, and identifies targets for the development of gender-specific therapies," said Jake Lusis, Ph.D., co-investigator and UCLA professor of human genetics.

The UCLA team examined brain, liver, fat and muscle tissue from mice with the goal of finding genetic clues related to mental illnesses, diabetes, obesity and atherosclerosis. Humans and mice share 99 percent of their genes.

The scientists focused on gene expression -- the process by which a gene's DNA sequence is converted into cellular proteins. With the help of Rosetta Informatics, the team scrutinized more than 23,000 genes to measure their expression level in male and female tissue.

What they found surprised them. While each gene functioned the same in both sexes, the scientists found a direct correlation between gender and the amount of gene expressed.

"We saw striking and measurable differences in more than half of the genes' expression patterns between males and females," said Dr. Thomas Drake, co-investigator and UCLA professor of pathology. "We didn't expect that. No one has previously demonstrated this genetic gender gap at such high levels."

UCLA is the first to uncover a gender difference in gene expression in fat and muscle tissue. Earlier studies have identified roughly 1,000 sex-biased genes in the liver, and other research has found a combined total of 60 gender-influenced genes in the brain – about one-tenth of what the UCLA team discovered in these organs.

Even in the same organ, the researchers identified scores of genes that varied in expression levels between the sexes. Gender consistently influenced the expression levels of thousands of genes in the liver, fat and muscle tissue. This effect was slightly more limited in the brain, where hundreds, not thousands, of genes showed different expression patterns.

"Males and females share the same genetic code, but our findings imply that gender regulates how quickly the body can convert DNA to proteins," said Yang. "This suggests that gender influences how disease develops."

The gender differences in gene expression also varied by tissue. Affected genes were typically those most involved in the organ's function, suggesting that gender influences important genes with specialized roles, not the rank-and-file.

In the liver, for example, the expression of genes involved in drug metabolism differed by sex. The findings imply that male and female livers function the same, but work at different rates.

"Our findings in the liver may explain why men and women respond differently to the same drug," noted Lusis. "Studies show that aspirin is more effective at preventing heart attack in men than women. One gender may metabolize the drug faster, leaving too little of the medication in the system to produce an effect."

"At the genetic level, the only difference between the genders is the sex chromosomes," said Drake. "Out of the more than 30,000 genes that make up the human genome, the X and Y chromosomes account for less than 2 percent of the body's genes. But when we looked at the gene expression in these four tissues, more than half of the genes differed significantly between the sexes. The differences were not related to reproductive systems – they were visible across the board and related to primary functions of a wide variety of organs."

The UCLA findings support the importance of gender-specific clinical trials. Most medication dosages for women have been based on clinical trials primarily conducted on men.

"This research represents a significant step forward in deepening our understanding of gender-based differences in medicine," said Dr. Janet Pregler, director of the Iris Cantor-UCLA Women's Health Center. The center's executive advisory board, a group of businesswomen interested in advancing women's health, helped fund the study.

"Many of the genes we identified relate to processes that influence common diseases," said Yang. "This is crucial, because once we understand the gender gap in these disease mechanisms, we can create new strategies for designing and testing new sex-specific drugs."

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>