Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds same genes act differently in males and females

11.07.2006
Discovery may explain gender gap in disease risk, drug response
Scientists may have revealed the origin of the battle of the sexes – in our genes.

UCLA researchers report that thousands of genes behave differently in the same organs of males and females – something never detected to this degree. Published in the August issue of Genome Research, the study sheds light on why the same disease often strikes males and females differently, and why the genders may respond differently to the same drug.

"We previously had no good understanding of why the sexes vary in their relationship to different diseases," explained Xia Yang, Ph.D., first author and postdoctoral fellow in cardiology at the David Geffen School of Medicine at UCLA. "Our study discovered a genetic disparity that may explain why males and females diverge in terms of disease risk, rate and severity."

"This research holds important implications for understanding disorders such as diabetes, heart disease and obesity, and identifies targets for the development of gender-specific therapies," said Jake Lusis, Ph.D., co-investigator and UCLA professor of human genetics.

The UCLA team examined brain, liver, fat and muscle tissue from mice with the goal of finding genetic clues related to mental illnesses, diabetes, obesity and atherosclerosis. Humans and mice share 99 percent of their genes.

The scientists focused on gene expression -- the process by which a gene's DNA sequence is converted into cellular proteins. With the help of Rosetta Informatics, the team scrutinized more than 23,000 genes to measure their expression level in male and female tissue.

What they found surprised them. While each gene functioned the same in both sexes, the scientists found a direct correlation between gender and the amount of gene expressed.

"We saw striking and measurable differences in more than half of the genes' expression patterns between males and females," said Dr. Thomas Drake, co-investigator and UCLA professor of pathology. "We didn't expect that. No one has previously demonstrated this genetic gender gap at such high levels."

UCLA is the first to uncover a gender difference in gene expression in fat and muscle tissue. Earlier studies have identified roughly 1,000 sex-biased genes in the liver, and other research has found a combined total of 60 gender-influenced genes in the brain – about one-tenth of what the UCLA team discovered in these organs.

Even in the same organ, the researchers identified scores of genes that varied in expression levels between the sexes. Gender consistently influenced the expression levels of thousands of genes in the liver, fat and muscle tissue. This effect was slightly more limited in the brain, where hundreds, not thousands, of genes showed different expression patterns.

"Males and females share the same genetic code, but our findings imply that gender regulates how quickly the body can convert DNA to proteins," said Yang. "This suggests that gender influences how disease develops."

The gender differences in gene expression also varied by tissue. Affected genes were typically those most involved in the organ's function, suggesting that gender influences important genes with specialized roles, not the rank-and-file.

In the liver, for example, the expression of genes involved in drug metabolism differed by sex. The findings imply that male and female livers function the same, but work at different rates.

"Our findings in the liver may explain why men and women respond differently to the same drug," noted Lusis. "Studies show that aspirin is more effective at preventing heart attack in men than women. One gender may metabolize the drug faster, leaving too little of the medication in the system to produce an effect."

"At the genetic level, the only difference between the genders is the sex chromosomes," said Drake. "Out of the more than 30,000 genes that make up the human genome, the X and Y chromosomes account for less than 2 percent of the body's genes. But when we looked at the gene expression in these four tissues, more than half of the genes differed significantly between the sexes. The differences were not related to reproductive systems – they were visible across the board and related to primary functions of a wide variety of organs."

The UCLA findings support the importance of gender-specific clinical trials. Most medication dosages for women have been based on clinical trials primarily conducted on men.

"This research represents a significant step forward in deepening our understanding of gender-based differences in medicine," said Dr. Janet Pregler, director of the Iris Cantor-UCLA Women's Health Center. The center's executive advisory board, a group of businesswomen interested in advancing women's health, helped fund the study.

"Many of the genes we identified relate to processes that influence common diseases," said Yang. "This is crucial, because once we understand the gender gap in these disease mechanisms, we can create new strategies for designing and testing new sex-specific drugs."

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>