Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Genetic Mutation in Florida Beach Mice Suggests Extinct Mammoth Had Light and Dark Fur

10.07.2006
Biologists at the University of California, San Diego have found that the main color differences among Florida’s mice—which are darker on the mainland, but lighter on the barrier islands to blend in with the white sand dunes—are largely due to a simple genetic mutation.

Their discovery, detailed in the July 7 issue of the journal Science, is one of the first to demonstrate how a small change in a single nucleotide—the smallest subunit of a gene—can affect the survival and evolutionary fitness of an organism in the wild.


Camouflaged beach mouse forages on the coastal sand dunes in Florida. Credit: Robert Burks

Because the mice differ not only in overall color, but in pigmentation pattern, the study also provides geneticists with a first step toward understanding how color patterns, such as zebra stripes and leopard spots, are generated in animals. And it raises the possibility that other vertebrates, such as mammoths, also evolved similar color variations using the same genetic mutation.

In a companion paper published in the same issue of Science, researchers in Germany report the discovery of this same mutation within DNA extracted from a 43,000-year-old bone of a wooly mammoth preserved in the permafrost of Siberia. Because the variations occur in the same nucleotide used by the Florida beach mice to alter their coat color, the University of Leipzig scientists say, populations of mammoths during the last Ice Age were likely composed of dark- and light-coated individuals.

“While there is growing evidence that phenotypic differences between organisms, like humans and chimps, are largely controlled by changes in gene regulation, these two studies are striking examples of how amino acid changes in structural proteins can also be important,” says Hopi Hoekstra, an assistant professor of biology at UC San Diego who headed the team that discovered the genetic roots of the color differences in Florida’s mice.

The coat pattern and color differences among populations of mice on the mainland and the barrier islands off the Florida Gulf and Atlantic coasts have been studied extensively since the 1920s, first by Francis Sumner of UCSD’s Scripps Institution of Oceanography. Sumner used the mice as a textbook example of how small, geographically isolated populations could adapt to their new environments and diverge into distinct subspecies.

Known to scientists as Peromyscus polionotus, mice living on the mainland have dark coats, which help them blend in with the vegetation and avoid their main predators—owls, hawks and herons—that hunt prey by sight. But on five barrier islands off the Florida Gulf coast and three off Northern Florida’s Atlantic coast, geographic isolation of the populations has resulted in eight distinct subspecies of beach mice, each with distinctive coat patterns that are lighter in color than their mainland counterpart.

“We know from geological evidence that the barrier islands are very recent, less than 6,000 years old,” says Hoekstra. “So these color mutations may have evolved rapidly.”

While scientists have been studying the genetics of complex coat patterns of these mice for nearly a century, few suspected that the simple mutation of a single nucleotide could have such a major impact on their coloration.

“We were surprised that this one gene could explain up to 36 percent of the variation we see in the mice,” she says. “It’s a large effect mutation. And what it says is that adaptation does not always occur gradually, but may happen in these relatively large jumps.”

Hoekstra and her colleagues—Rachel Hirschmann of UCSD’s Division of Biological Sciences and Richard Bundey and Paul Insel of UCSD’s Department of Pharmacology—discovered the single nucleotide mutation in the melanocortin-1 receptor, a gene which regulates the pigmentation of hair color.

In laboratory mating of the different subspecies to produce genetic crosses, the UCSD scientists report in their paper that the variations of this gene account as much as 36 percent of the color variation in Gulf Coast mice. Surprisingly, however, this mutation was absent in the two Atlantic Coast subspecies, even though these Atlantic coast beach mice have similarly light colored coats. The results suggest that beach mice gain their light coloration through different genetic mechanisms.

“There is apparently more than one way genetically to become a light-colored beach mouse,” says Hoekstra.

Other genes also contribute to the differences in the coat patterns among the mice. But, concedes Hoekstra, “We know very little genetically about how coat patterns are generated in mammals. This study is a first step toward understanding this complex genetic process.”

Unfortunately for the scientists, the subjects of their study are disappearing rapidly. One of the eight original subspecies studied by Sumner has since become extinct and six of the seven remaining subspecies are considered endangered because their habitats are being destroyed by human development.

“These mice exist on beautiful white-sand beaches, inhabit the sand dunes and feed on sea oats,” says Hoekstra. Their pristine habitat is being destroyed by human development coupled with hurricanes.

“Unfortunately these mice like the same habitat where people want to build beach homes and the two don’t coexist well together,” she adds. “The mice are now only found in protected areas, and hurricanes become a big threat because these beach mouse populations, which are so wonderfully adapted to their environment, are now small and fragmented.”

Funding for the study was provided by the National Science Foundation.

Comment:
Hopi Hoekstra, (858) 822-0160
Media Contacts:
Kim McDonald UCSD, (858) 534-7572
Sherry Seethaler UCSD, (858) 534-4656

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>