U of I scientist develops enzyme inhibitor that may slow cancer growth

“These chemicals are potent inhibitors of an enzyme called betaine-homocysteine-S-methyltransferase (BHMT),” said Garrow.

“BHMT catalyzes a reaction that converts homocysteine to methionine. Because cancer cells require high levels of methionine, the ability to slow methionine's production could result in a treatment that will selectively inhibit cancer growth,” the U of I professor of nutrition said.

Methionine, an essential amino acid, is required for several important biological processes, including synthesis of a compound that cancer cells require more than other cells. “When scientists restrict dietary methionine in animals with cancer, cancer cells are more acutely affected than others,” Garrow said.

Many drugs work by inhibiting the action of an enzyme, including the statin drugs used to lower cholesterol, he added.

Garrow became interested in BHMT, which is abundant in the liver and present in lesser amounts in the kidneys, because elevated levels of blood homocysteine have been linked with a number of diseases, including vascular disease and thrombosis.

“Our lab has always been interested in BHMT's role in modulating plasma homocysteine, and we've engaged in some productive research collaborations. Martha Ludwig's lab at the University of Michigan solved BMHT's crystal structure.

“That breakthrough enabled us to look at the enzyme in three dimensions, which helped us design inhibitors for it. Several of those compounds were very effective in blocking binding of the enzyme's normal substrates,” he said.

Injecting one of these BHMT inhibitors into the abdomens of mice resulted in changes in metabolite concentrations and elevated levels of homocysteine in the animals, showing that “our chemical inhibitor made its way from the abdominal cavity into the mouse's liver, where the inhibitor blocked the BHMT-catalyzed reaction as we thought it would.”

Garrow believes BHMT inhibitors may work best in concert with other drugs. “In today's medicine, there's rarely one magic-bullet drug. We know that when you decrease the availability of methionine to cancer cells, another cancer drug called cisplatin works better. So a drug that inhibits BHMT, which decreases methionine availability, may well enhance the efficacy of another cancer treatment drug,” he said.

Elevated levels of homocysteine could be a negative side effect of such therapy, but Garrow said the benefits of the drug would likely outweigh the risk. “A cancer patient would probably take the BMHT inhibitor for a limited time, while vascular disease–associated with high homocysteine levels–progresses over the course of a lifetime.”

Garrow believes another therapeutic application for BHMT inhibitors could involve betaine, one of the enzyme's substrates.

“When you inhibit BHMT, you also block the utilization of betaine. Betaine not only donates a methyl group to homocysteine to form methionine, it also functions as an osmolyte, helping to regulate water content in the cells. We think the BHMT inhibitor could also be medically useful when there is unwanted diuresis or unwanted loss of water,” he said.

Garrow's work with BHMT in mice was published in the June issue of the Journal of Nutrition. Co-authors include Michaela Collinsova, Jana Strakova, and Jiri Jiracek of the Academy of Sciences of the Czech Republic.

Media Contact

Phyllis Picklesimer EurekAlert!

More Information:

http://www.uiuc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors