Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of I scientist develops enzyme inhibitor that may slow cancer growth

Urbana –University of Illinois scientist Tim Garrow, in collaboration with Jiri Jiracek of the Czech Academy of Sciences, has applied for a provisional patent on a class of chemicals that has future therapeutic uses in medicine, specifically cancer treatment.

"These chemicals are potent inhibitors of an enzyme called betaine-homocysteine-S-methyltransferase (BHMT)," said Garrow.

"BHMT catalyzes a reaction that converts homocysteine to methionine. Because cancer cells require high levels of methionine, the ability to slow methionine's production could result in a treatment that will selectively inhibit cancer growth," the U of I professor of nutrition said.

Methionine, an essential amino acid, is required for several important biological processes, including synthesis of a compound that cancer cells require more than other cells. "When scientists restrict dietary methionine in animals with cancer, cancer cells are more acutely affected than others," Garrow said.

Many drugs work by inhibiting the action of an enzyme, including the statin drugs used to lower cholesterol, he added.

Garrow became interested in BHMT, which is abundant in the liver and present in lesser amounts in the kidneys, because elevated levels of blood homocysteine have been linked with a number of diseases, including vascular disease and thrombosis.

"Our lab has always been interested in BHMT's role in modulating plasma homocysteine, and we've engaged in some productive research collaborations. Martha Ludwig's lab at the University of Michigan solved BMHT's crystal structure.

"That breakthrough enabled us to look at the enzyme in three dimensions, which helped us design inhibitors for it. Several of those compounds were very effective in blocking binding of the enzyme's normal substrates," he said.

Injecting one of these BHMT inhibitors into the abdomens of mice resulted in changes in metabolite concentrations and elevated levels of homocysteine in the animals, showing that "our chemical inhibitor made its way from the abdominal cavity into the mouse's liver, where the inhibitor blocked the BHMT-catalyzed reaction as we thought it would."

Garrow believes BHMT inhibitors may work best in concert with other drugs. "In today's medicine, there's rarely one magic-bullet drug. We know that when you decrease the availability of methionine to cancer cells, another cancer drug called cisplatin works better. So a drug that inhibits BHMT, which decreases methionine availability, may well enhance the efficacy of another cancer treatment drug," he said.

Elevated levels of homocysteine could be a negative side effect of such therapy, but Garrow said the benefits of the drug would likely outweigh the risk. "A cancer patient would probably take the BMHT inhibitor for a limited time, while vascular disease--associated with high homocysteine levels--progresses over the course of a lifetime."

Garrow believes another therapeutic application for BHMT inhibitors could involve betaine, one of the enzyme's substrates.

"When you inhibit BHMT, you also block the utilization of betaine. Betaine not only donates a methyl group to homocysteine to form methionine, it also functions as an osmolyte, helping to regulate water content in the cells. We think the BHMT inhibitor could also be medically useful when there is unwanted diuresis or unwanted loss of water," he said.

Garrow's work with BHMT in mice was published in the June issue of the Journal of Nutrition. Co-authors include Michaela Collinsova, Jana Strakova, and Jiri Jiracek of the Academy of Sciences of the Czech Republic.

Phyllis Picklesimer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>