Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of I scientist develops enzyme inhibitor that may slow cancer growth

10.07.2006
Urbana –University of Illinois scientist Tim Garrow, in collaboration with Jiri Jiracek of the Czech Academy of Sciences, has applied for a provisional patent on a class of chemicals that has future therapeutic uses in medicine, specifically cancer treatment.

"These chemicals are potent inhibitors of an enzyme called betaine-homocysteine-S-methyltransferase (BHMT)," said Garrow.

"BHMT catalyzes a reaction that converts homocysteine to methionine. Because cancer cells require high levels of methionine, the ability to slow methionine's production could result in a treatment that will selectively inhibit cancer growth," the U of I professor of nutrition said.

Methionine, an essential amino acid, is required for several important biological processes, including synthesis of a compound that cancer cells require more than other cells. "When scientists restrict dietary methionine in animals with cancer, cancer cells are more acutely affected than others," Garrow said.

Many drugs work by inhibiting the action of an enzyme, including the statin drugs used to lower cholesterol, he added.

Garrow became interested in BHMT, which is abundant in the liver and present in lesser amounts in the kidneys, because elevated levels of blood homocysteine have been linked with a number of diseases, including vascular disease and thrombosis.

"Our lab has always been interested in BHMT's role in modulating plasma homocysteine, and we've engaged in some productive research collaborations. Martha Ludwig's lab at the University of Michigan solved BMHT's crystal structure.

"That breakthrough enabled us to look at the enzyme in three dimensions, which helped us design inhibitors for it. Several of those compounds were very effective in blocking binding of the enzyme's normal substrates," he said.

Injecting one of these BHMT inhibitors into the abdomens of mice resulted in changes in metabolite concentrations and elevated levels of homocysteine in the animals, showing that "our chemical inhibitor made its way from the abdominal cavity into the mouse's liver, where the inhibitor blocked the BHMT-catalyzed reaction as we thought it would."

Garrow believes BHMT inhibitors may work best in concert with other drugs. "In today's medicine, there's rarely one magic-bullet drug. We know that when you decrease the availability of methionine to cancer cells, another cancer drug called cisplatin works better. So a drug that inhibits BHMT, which decreases methionine availability, may well enhance the efficacy of another cancer treatment drug," he said.

Elevated levels of homocysteine could be a negative side effect of such therapy, but Garrow said the benefits of the drug would likely outweigh the risk. "A cancer patient would probably take the BMHT inhibitor for a limited time, while vascular disease--associated with high homocysteine levels--progresses over the course of a lifetime."

Garrow believes another therapeutic application for BHMT inhibitors could involve betaine, one of the enzyme's substrates.

"When you inhibit BHMT, you also block the utilization of betaine. Betaine not only donates a methyl group to homocysteine to form methionine, it also functions as an osmolyte, helping to regulate water content in the cells. We think the BHMT inhibitor could also be medically useful when there is unwanted diuresis or unwanted loss of water," he said.

Garrow's work with BHMT in mice was published in the June issue of the Journal of Nutrition. Co-authors include Michaela Collinsova, Jana Strakova, and Jiri Jiracek of the Academy of Sciences of the Czech Republic.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>