Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell survival depends on chromosome integrity

10.07.2006
As part of a large National Institutes of Health-funded Technology Centers for Networks and Pathways project, Johns Hopkins researchers have discovered protein machinery important for cells to keep chromosomes intact. Without such proteins, their experiments show that yeast cells experience broken chromosomes and DNA damage that in human cells are well known to lead to cancer.

"Maintaining genome integrity is crucial for cell survival," says Jef Boeke, Ph.D., Sc.D., the report's senior author, a professor of molecular biology and genetics and co-director of the High Throughput Biology Center of the Institute for Basic Biomedical Sciences at Hopkins. The report will appear online July 6 in Current Biology.

Boeke and colleagues show that removing from yeast cells two proteins called sirtuins -- Hst3p and Hst4p -- causes cells to become hypersensitive to chemical agents and temperature and to spontaneously break and/or lose chromosomes. In humans, the loss or breakage of chromosomes can cause cells to lose control of when and if they are supposed to divide, becoming cancerous.

Nearly every human cell contains about six feet of DNA packaged into chromosomes. Chromosomes consist of DNA wrapped around a scaffold-like structure made of proteins called histones. Each time a cell divides into two, all of this DNA must be copied exactly and repackaged properly with histones to form chromosomes in the new cell.

During the copying process, new chromosomes often have breaks in them that need to be sealed before the chromosome is considered "finished" and the cell is ready to divide into two. All cells have damage control mechanisms that can sense nicks and breaks in chromosomes -- DNA damage -- and repair them.

"We think acetylation somehow marks the newly copied DNA so the cell knows to repair the breaks," says Boeke. "Once the breaks are repaired, the acetyl groups no longer are needed and are removed in normal cells."

Sirtuins Hst3p and Hst4p are proteins required to remove these specific chemical "decorations" -- called acetyl groups -- from specific sites on histones. The acetyl groups are added to lysine-56, an amino acid in the histone protein chain. Chromosomes in yeast cells missing Hst3p and Hst4p become hyperacetylated on lysine-56 -- it appears that every lysine-56 in every histone has attached an acetyl group.

"This is the first time we've ever seen such a huge effect," says Boeke. "The chromosomes just light up with acetyl groups -- they're just saturated" when cells are missing these sirtuins.

Earlier work showed that yeast cells initially need the lysine-56 decorations to repair breaks or other damage to DNA that occur when the DNA is copied, an essential process that also has the potential to seriously damage DNA. This new work shows that it is even more critical for yeast cells to remove these decorations once repair has been completed. Thus, there is an endless cycle of putting the acetyl groups on whenever there is damage or the danger thereof and taking them off again. Failure to take off the "decorations" leads to loss of entire chromosomes and other problems with the DNA.

Thus, yeast cells need to carefully coordinate acetylation and deacetylation of lysine-56.

The team concludes that by putting an acetyl group on lysine-56, the cell is signaling that its DNA is newly made and as a result possibly contains dangerous breaks. Acetylation on lysine-56 may be a universal mechanism for cells to mark damaged DNA. DNA damage can be caused by exposure to chemical mutagens, chemotherapy or even sunlight.

"There are a million mutagens in our environment," says Boeke. Once cells repair the DNA damage, it is important to shut off repair machinery and return to normal state. The cells require proteins like the sirtuins Hst3p and Hst4p to act as guideposts to help identify dangerous DNA lesions. If the DNA repair machinery does not fix these lesions to maintain chromosome integrity, the cell would lose control of growth or death.

Moving forward, the team hopes to further understand what controls these sirtuins to remove acetyl groups and how hyperacetylation can lead to such dramatic loss of chromosome integrity.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Dry landscapes can increase disease transmission

20.06.2018 | Ecology, The Environment and Conservation

Agrophotovoltaics Goes Global: from Chile to Vietnam

20.06.2018 | Power and Electrical Engineering

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>