Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fat-generated hormone drives energetic capacity of muscle

The fat-generated hormone adiponectin plays an important role in the energetic capacity of skeletal muscle, according to a new study in the July, 2006, Cell Metabolism, published by Cell Press. Adiponectin is unusual among fat hormones in that its levels generally decline in those who are obese.

The researchers report evidence in people and mice, linking low adiponectin levels to insulin resistance and reductions in the number of "cellular power plants" called mitochondria in skeletal muscle. The findings suggest that therapies designed to boost the adiponectin signal might prove beneficial for the treatment of insulin resistance and diabetes, they said.

"We have discovered a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects," said lead author Anthony Civitarese from Pennington Biomedical Research Center in Baton Rouge, Louisiana.

Mitochondria utilize nutrient components, including fats and carbohydrates, to generate usable energy. The number of mitochondria therefore influences the way that muscles function. For example, people who exercise regularly have more mitochondria in their muscles than do those who are sedentary.

Earlier studies found that obese individuals and those with type 2 diabetes have reduced adiponectin concentrations, the researchers said. The new study examined the effects of that reduced adiponectin on skeletal muscle.

The researchers first examined children whose parents had type 2 diabetes and those with no family history of the disease. Muscle taken from individuals prone to diabetes was insulin resistant and had lower than normal concentrations of mitochondrial enzymes, suggesting some dysfunction, they found. The level of adiponectin also correlated with the estimated number of mitochondria in the muscle samples.

Further study of adiponectin-deficient mice similarly found that the animals were resistant to insulin and exhibited deficits in mitochondria in their skeletal muscles.

Finally, the researchers showed that adiponectin treatment of human muscle tissue in culture sparked the production of mitochondria. The treatment also limited the production of harmful free radicals, or reactive oxygen species, a sign that the mitochondria were operating more efficiently.

The current findings, together with earlier studies that showed that adiponectin increases glucose uptake from the blood stream, suggest that the hormone might have therapeutic potential for those with insulin resistance or type 2 diabetes, Civitarese said.

However, adiponectin itself is difficult to produce in the quantities that would be required for a drug, he added.

"It may be that a mimetic drug that acts like adiponectin might prove beneficial," he said.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>