Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat-generated hormone drives energetic capacity of muscle

06.07.2006
The fat-generated hormone adiponectin plays an important role in the energetic capacity of skeletal muscle, according to a new study in the July, 2006, Cell Metabolism, published by Cell Press. Adiponectin is unusual among fat hormones in that its levels generally decline in those who are obese.

The researchers report evidence in people and mice, linking low adiponectin levels to insulin resistance and reductions in the number of "cellular power plants" called mitochondria in skeletal muscle. The findings suggest that therapies designed to boost the adiponectin signal might prove beneficial for the treatment of insulin resistance and diabetes, they said.

"We have discovered a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects," said lead author Anthony Civitarese from Pennington Biomedical Research Center in Baton Rouge, Louisiana.

Mitochondria utilize nutrient components, including fats and carbohydrates, to generate usable energy. The number of mitochondria therefore influences the way that muscles function. For example, people who exercise regularly have more mitochondria in their muscles than do those who are sedentary.

Earlier studies found that obese individuals and those with type 2 diabetes have reduced adiponectin concentrations, the researchers said. The new study examined the effects of that reduced adiponectin on skeletal muscle.

The researchers first examined children whose parents had type 2 diabetes and those with no family history of the disease. Muscle taken from individuals prone to diabetes was insulin resistant and had lower than normal concentrations of mitochondrial enzymes, suggesting some dysfunction, they found. The level of adiponectin also correlated with the estimated number of mitochondria in the muscle samples.

Further study of adiponectin-deficient mice similarly found that the animals were resistant to insulin and exhibited deficits in mitochondria in their skeletal muscles.

Finally, the researchers showed that adiponectin treatment of human muscle tissue in culture sparked the production of mitochondria. The treatment also limited the production of harmful free radicals, or reactive oxygen species, a sign that the mitochondria were operating more efficiently.

The current findings, together with earlier studies that showed that adiponectin increases glucose uptake from the blood stream, suggest that the hormone might have therapeutic potential for those with insulin resistance or type 2 diabetes, Civitarese said.

However, adiponectin itself is difficult to produce in the quantities that would be required for a drug, he added.

"It may be that a mimetic drug that acts like adiponectin might prove beneficial," he said.

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>