Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Animal Genes Were Available Before Animals Were

19.12.2001


Without the help of fossils or any other record from the distant past, scientists have identified what they believe represents a common ancestor of all animals on Earth, a microscopic organism with key genetic traits that, until now, have been found only in true animals.


Writing in Tuesday’s Proceedings of the National Academy of Sciences, a team of scientists from the Howard Hughes Medical Institute at the University of Wisconsin-Madison reports the discovery of a key cell communication gene in modern, single-celled microbes known as choanoflagellates.

Long suspected to be close relatives of animals, choanoflagellates have a lineage that dates to more than 600 million years ago, the time when animals -- multicellular organisms with distinct body plans and systems of organs -- are believed to have evolved in the ancient stew of microscopic protozoan life

Ancient microbes eventually gave rise not only to animals, but also plants, fungi, bacteria, and other living things, each going their separate ways to make up the tree of life as we know it today. The evolution of multicellular animals from a unicellular protozoan ancestor has long been recognized as a pivotal transition in the history of life.



"The question is, who were the ancestors of animals and what genetic tools did they pass down to the original animals," says Sean B. Carroll, a UW-Madison professor of genetics and the senior author of the PNAS study. "This is a difficult question to answer because the events are completely invisible in the fossil record."

Choanoflagellates represent an order of transparent, single-celled microbes that propel themselves with whiplike appendages. They exist in many forms today and, like animals, their lineage stretches back hundreds of millions of years to the mix of microscopic life that first evolved on Earth.

"Choanoflagellates thrive today and are the closest non-animal organisms to animals. They are to animals what chimps are to humans, and by studying some of their genetic characteristics, we can begin to make some strong inferences" about how animals evolved, Carroll says.

In recent years, biologists have come to understand that nature, in her use of genes, is thrifty. Instead of inventing new genes to accomplish new tasks, animals tend to redeploy existing genes in new ways. For example, genes used to make the very pedestrian wings of fruit flies are also those that butterflies use in different ways to make their far more colorful and shapely wings.

Understanding this phenomenon has enabled scientists to track evolutionary relationships between animals by looking for common genetic themes.

Undertaking a similar exploration in choanoflagellates, Carroll and his colleague, Nicole King, also of the Howard Hughes Medical Institute at UW-Madison, discovered a signaling gene in a choanoflagellate that, until now, was known only in animals.

"To build a multicellular organism compatible with a multicellular lifestyle is something that is very difficult," explains Carroll. "It takes a lot of genetic machinery to do that, and you have to ask the question, did it all arise when animals came along, or was some of it in place earlier?"

The current study, he says, strongly suggests that the key genes animals use today were indeed already available on the eve of animal evolution.

"We’re starting to get a glimpse of the genetic tool kit we have in common. In choanoflagellates, we’ve found genes that heretofore were believed to exist only in animals. It’s a confirmation of the idea that the genes come first, before their exploitation by organisms."

The gene-based signaling pathway found in extant choanoflagellates, Carroll says, resembles a similar pathway found in organisms as diverse as sponges and humans.

"Choanoflagellates express genes involved in animal development that are not found in other single-celled organisms, and that may be linked to the origin of animals. In other words, it looks like, walks like, and smells like genes that we are familiar with but that, apparently, evolved at the base of the node where animals split off the tree."

The identification of a common ancestor to all animals is important, according to Carroll, because it helps fill in the big picture of the evolution and diversity of life on Earth. It helps us understand, he says, how animals came to be and how nature creatively uses the same molecular tools to sculpt life in different ways

Terry Devitt | International Science News
Further information:
http://unisci.com/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>