Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Animal Genes Were Available Before Animals Were

19.12.2001


Without the help of fossils or any other record from the distant past, scientists have identified what they believe represents a common ancestor of all animals on Earth, a microscopic organism with key genetic traits that, until now, have been found only in true animals.


Writing in Tuesday’s Proceedings of the National Academy of Sciences, a team of scientists from the Howard Hughes Medical Institute at the University of Wisconsin-Madison reports the discovery of a key cell communication gene in modern, single-celled microbes known as choanoflagellates.

Long suspected to be close relatives of animals, choanoflagellates have a lineage that dates to more than 600 million years ago, the time when animals -- multicellular organisms with distinct body plans and systems of organs -- are believed to have evolved in the ancient stew of microscopic protozoan life

Ancient microbes eventually gave rise not only to animals, but also plants, fungi, bacteria, and other living things, each going their separate ways to make up the tree of life as we know it today. The evolution of multicellular animals from a unicellular protozoan ancestor has long been recognized as a pivotal transition in the history of life.



"The question is, who were the ancestors of animals and what genetic tools did they pass down to the original animals," says Sean B. Carroll, a UW-Madison professor of genetics and the senior author of the PNAS study. "This is a difficult question to answer because the events are completely invisible in the fossil record."

Choanoflagellates represent an order of transparent, single-celled microbes that propel themselves with whiplike appendages. They exist in many forms today and, like animals, their lineage stretches back hundreds of millions of years to the mix of microscopic life that first evolved on Earth.

"Choanoflagellates thrive today and are the closest non-animal organisms to animals. They are to animals what chimps are to humans, and by studying some of their genetic characteristics, we can begin to make some strong inferences" about how animals evolved, Carroll says.

In recent years, biologists have come to understand that nature, in her use of genes, is thrifty. Instead of inventing new genes to accomplish new tasks, animals tend to redeploy existing genes in new ways. For example, genes used to make the very pedestrian wings of fruit flies are also those that butterflies use in different ways to make their far more colorful and shapely wings.

Understanding this phenomenon has enabled scientists to track evolutionary relationships between animals by looking for common genetic themes.

Undertaking a similar exploration in choanoflagellates, Carroll and his colleague, Nicole King, also of the Howard Hughes Medical Institute at UW-Madison, discovered a signaling gene in a choanoflagellate that, until now, was known only in animals.

"To build a multicellular organism compatible with a multicellular lifestyle is something that is very difficult," explains Carroll. "It takes a lot of genetic machinery to do that, and you have to ask the question, did it all arise when animals came along, or was some of it in place earlier?"

The current study, he says, strongly suggests that the key genes animals use today were indeed already available on the eve of animal evolution.

"We’re starting to get a glimpse of the genetic tool kit we have in common. In choanoflagellates, we’ve found genes that heretofore were believed to exist only in animals. It’s a confirmation of the idea that the genes come first, before their exploitation by organisms."

The gene-based signaling pathway found in extant choanoflagellates, Carroll says, resembles a similar pathway found in organisms as diverse as sponges and humans.

"Choanoflagellates express genes involved in animal development that are not found in other single-celled organisms, and that may be linked to the origin of animals. In other words, it looks like, walks like, and smells like genes that we are familiar with but that, apparently, evolved at the base of the node where animals split off the tree."

The identification of a common ancestor to all animals is important, according to Carroll, because it helps fill in the big picture of the evolution and diversity of life on Earth. It helps us understand, he says, how animals came to be and how nature creatively uses the same molecular tools to sculpt life in different ways

Terry Devitt | International Science News
Further information:
http://unisci.com/

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>