Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic parallels found between lung development and lung cancer

05.07.2006
Gene activity patterns provide a new way to classify tumors

For over 100 years, biologists have speculated that cancer growth shares common features with embryonic development. Researchers at Children's Hospital Boston now provide solid evidence for this idea, showing through gene-chip analyses and bioinformatics techniques that many genes that are differentially expressed (turned "up" or "down") during early embryonic lung development are also differentially expressed in lung cancer.


Genes whose activity is increased in adenocarcinoma (green circles) tend to be active early in lung development, while genes with reduced activity (magenta) tend to be active late in development.

More importantly, they show that gene-expression profiling can predict a lung cancer's prognosis, and that cancers whose gene expression pattern resembles gene expression during the earliest stages of lung development have the worst prognosis of all.

"This confirms our earlier finding of the importance of normal organ development in understanding cancer," says Isaac Kohane, MD, PhD, director of the CHIP program and a co-author on the paper. "Our observations might translate into more accurate prognoses and help us identify mechanisms of cancer growth that can be therapeutically targeted."

Lung cancer, the world's leading cause of cancer deaths, has many known subtypes, but it is commonly misclassified, delaying appropriate treatment. In addition, cancers within a subtype may vary in their aggressiveness.

Seeking a better way to classify lung cancers, Hongye Liu, PhD, and colleagues in the Children's Hospital Informatics Program (CHIP) examined gene activity in tumors from 186 patients and compared it with the gene activity that occurs during normal embryonic lung development in mice. They also examined 17 samples of normal lung tissue. Starting with 3,500 genes known to be common to mice and humans, they identified 596 genes whose activity was altered both in lung tumors and during lung development.

Using the natural trajectory of lung development as a framework, Liu and colleagues were able to predict survival in patients with adenocarcinoma (the most common type of lung cancer, and the only type for which they had survival data). Tumors with gene expression patterns most like those during very early lung development had the worst prognosis, while tumors with gene expression patterns resembling those seen late in lung development had the best prognosis. Even within a single adenocarcinoma subtype – stage I disease – survival times varied according to gene expression patterns. Gene expression patterns in normal lung tissue resembled those seen in late in lung development.

"Before, the idea that cancer and organ development are related was not quantified or statistically significantly demonstrated," says Liu. "The development perspective gives us a new mechanism for understanding cancer."

The researchers also found that one lung cancer subtype, carcinoid tumors, have a gene expression profile distinct from all the others. When biopsy specimens are examined, carcinoid looks very similar to small-cell lung cancer, and the two are often mistaken for each other, yet their life expectancy and optimal treatments are very different. "By molecular profiling, we can distinguish these two cancers," Liu says.

In addition, focusing on the 100 genes with the greatest cancer/development correlation, Liu and colleagues found three groups of genes that are involved in biological pathways believed to be key in lung cancer development, and some of the genes showed potential as drug targets. Several genes had stem-cell-like characteristics.

Liu's work builds on a 2004 study, in which Kohane and Alvin Kho, PhD (another co-investigator on Liu's study) showed that a pediatric brain tumor called medulloblastoma shares many common genetic features with the cerebellum in its earliest stages of development (www.childrenshospital.org/newsroom/Site1339/mainpageS1339P1sublevel81.html).

James Newton | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>