Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic parallels found between lung development and lung cancer

05.07.2006
Gene activity patterns provide a new way to classify tumors

For over 100 years, biologists have speculated that cancer growth shares common features with embryonic development. Researchers at Children's Hospital Boston now provide solid evidence for this idea, showing through gene-chip analyses and bioinformatics techniques that many genes that are differentially expressed (turned "up" or "down") during early embryonic lung development are also differentially expressed in lung cancer.


Genes whose activity is increased in adenocarcinoma (green circles) tend to be active early in lung development, while genes with reduced activity (magenta) tend to be active late in development.

More importantly, they show that gene-expression profiling can predict a lung cancer's prognosis, and that cancers whose gene expression pattern resembles gene expression during the earliest stages of lung development have the worst prognosis of all.

"This confirms our earlier finding of the importance of normal organ development in understanding cancer," says Isaac Kohane, MD, PhD, director of the CHIP program and a co-author on the paper. "Our observations might translate into more accurate prognoses and help us identify mechanisms of cancer growth that can be therapeutically targeted."

Lung cancer, the world's leading cause of cancer deaths, has many known subtypes, but it is commonly misclassified, delaying appropriate treatment. In addition, cancers within a subtype may vary in their aggressiveness.

Seeking a better way to classify lung cancers, Hongye Liu, PhD, and colleagues in the Children's Hospital Informatics Program (CHIP) examined gene activity in tumors from 186 patients and compared it with the gene activity that occurs during normal embryonic lung development in mice. They also examined 17 samples of normal lung tissue. Starting with 3,500 genes known to be common to mice and humans, they identified 596 genes whose activity was altered both in lung tumors and during lung development.

Using the natural trajectory of lung development as a framework, Liu and colleagues were able to predict survival in patients with adenocarcinoma (the most common type of lung cancer, and the only type for which they had survival data). Tumors with gene expression patterns most like those during very early lung development had the worst prognosis, while tumors with gene expression patterns resembling those seen late in lung development had the best prognosis. Even within a single adenocarcinoma subtype – stage I disease – survival times varied according to gene expression patterns. Gene expression patterns in normal lung tissue resembled those seen in late in lung development.

"Before, the idea that cancer and organ development are related was not quantified or statistically significantly demonstrated," says Liu. "The development perspective gives us a new mechanism for understanding cancer."

The researchers also found that one lung cancer subtype, carcinoid tumors, have a gene expression profile distinct from all the others. When biopsy specimens are examined, carcinoid looks very similar to small-cell lung cancer, and the two are often mistaken for each other, yet their life expectancy and optimal treatments are very different. "By molecular profiling, we can distinguish these two cancers," Liu says.

In addition, focusing on the 100 genes with the greatest cancer/development correlation, Liu and colleagues found three groups of genes that are involved in biological pathways believed to be key in lung cancer development, and some of the genes showed potential as drug targets. Several genes had stem-cell-like characteristics.

Liu's work builds on a 2004 study, in which Kohane and Alvin Kho, PhD (another co-investigator on Liu's study) showed that a pediatric brain tumor called medulloblastoma shares many common genetic features with the cerebellum in its earliest stages of development (www.childrenshospital.org/newsroom/Site1339/mainpageS1339P1sublevel81.html).

James Newton | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>