Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A surprise about our body clock

05.07.2006
Discovery requires new approach to meds for sleep woes

The first gene known to control the internal clock of humans and other mammals works much differently than previously believed, according to a study by Utah and Michigan researchers.

The surprising discovery means scientists must change their approach to designing new drugs to treat jet lag, insomnia, some forms of depression, sleep problems in shift workers and other circadian rhythm disorders, according to researchers at the University of Utah's Huntsman Cancer Institute and the University of Michigan, Ann Arbor.

The study – which involved the so-called tau mutation that causes hamsters to have a 20-hour day instead of a 24-hour day – will be published online the week of July 3 in the journal Proceedings of the National Academy of Sciences.

The researchers discovered that what was previously believed about the tau mutation – that a decrease in gene activity sped up a mammal's internal clock – was incorrect. Instead, the mutation caused an increase in gene activity to speed up the clock, making the day two to four hours shorter for affected animals.

Previous work had indicated that the tau mutation occurred in a gene called casein kinase 1 epsilon (CK1) and that the mutation caused an 85 percent loss of gene activity. This, it was thought, explained why the hamster had a short day. But as it turns out, this idea was wrong.

"The key to developing treatments for problems like depression and insomnia – disorders influenced by circadian rhythm – is being able to predict how the body's internal clock can be controlled," says David Virshup, M.D., co-principal investigator on the project and a Huntsman Cancer Institute investigator. "If the working model is wrong, drugs will have the opposite effect."

The new study involved the collaboration between University of Michigan mathematician Daniel Forger, Ph.D., assistant professor of mathematics, who had developed a computer simulation of the biological clock, and Virshup, who had previously done research on CK1's effect on circadian rhythm and its role in cancer development. Disruption of circadian rhythms has been linked to cancer and diabetes as well as depression and sleep disorders.

Forger ran computer simulations of how the tau mutation influenced the mammalian body clock. The tau mutant hamster has a short day. When a simulation used the prevailing theory that the mutation decreased CK1 gene activity, the simulation predicted that the day for the hamster got longer. But when Forger ran a simulation based on the controversial idea that the tau mutation increased activity of the CK1 gene, the day did get shorter, just as it does in real hamsters with the tau mutation.

"So he concluded that the tau mutation must increase, not decrease, the activity of the CK1 gene," contrary to the accepted wisdom, Virshup says.

Few people working in circadian rhythm were convinced that Forger's mathematical model was correct. But the Huntsman Cancer Institute researchers were interested because their experiments also suggested the tau mutation increased rather than decreased activity of the CK1 gene.

Virshup, with members of his lab Monica Gallego, Ph.D.; Erik Eide, Ph.D.; and Margaret Woolf, had used a drug that inhibited CK1 on cultured rat cells. According to the published research, they expected the cells to have a shorter day, just like the mutant hamster. Instead, the cells had a longer day. They were ready to believe that Forger's simulation could be proved.

A simple experiment showed them why the cells' day got longer and why Forger's simulation was correct.

The Virshup lab had already established a way to measure how quickly PER, one of the proteins responsible for running the biological clock, degraded. It is the disappearance of PER and a related protein from cells that resets the body's internal clock to start a new day.

Forger's simulation said the tau mutation would cause PER to go away more quickly. The old model said the mutation caused PER to build up more quickly. Virshup explains: "The mutation can't do both. We put either the normal or the mutant CK1 gene into mouse cells, and then we watched what happened to PER stability."

The results proved Forger's prediction: the circadian rhythm within the mouse cells sped up because the mutant CK1 gene was more active, making the PER protein disappear more quickly. That would explain why a day for an animal with the tau mutation would last only 20 hours.

Virshup says his team has begun development of a mouse model so they can begin to test ways to regulate circadian rhythm based on their findings. That will be a necessary step before new drugs can be developed for disorders related to circadian rhythms.

David Virshup | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>