Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A surprise about our body clock

Discovery requires new approach to meds for sleep woes

The first gene known to control the internal clock of humans and other mammals works much differently than previously believed, according to a study by Utah and Michigan researchers.

The surprising discovery means scientists must change their approach to designing new drugs to treat jet lag, insomnia, some forms of depression, sleep problems in shift workers and other circadian rhythm disorders, according to researchers at the University of Utah's Huntsman Cancer Institute and the University of Michigan, Ann Arbor.

The study – which involved the so-called tau mutation that causes hamsters to have a 20-hour day instead of a 24-hour day – will be published online the week of July 3 in the journal Proceedings of the National Academy of Sciences.

The researchers discovered that what was previously believed about the tau mutation – that a decrease in gene activity sped up a mammal's internal clock – was incorrect. Instead, the mutation caused an increase in gene activity to speed up the clock, making the day two to four hours shorter for affected animals.

Previous work had indicated that the tau mutation occurred in a gene called casein kinase 1 epsilon (CK1) and that the mutation caused an 85 percent loss of gene activity. This, it was thought, explained why the hamster had a short day. But as it turns out, this idea was wrong.

"The key to developing treatments for problems like depression and insomnia – disorders influenced by circadian rhythm – is being able to predict how the body's internal clock can be controlled," says David Virshup, M.D., co-principal investigator on the project and a Huntsman Cancer Institute investigator. "If the working model is wrong, drugs will have the opposite effect."

The new study involved the collaboration between University of Michigan mathematician Daniel Forger, Ph.D., assistant professor of mathematics, who had developed a computer simulation of the biological clock, and Virshup, who had previously done research on CK1's effect on circadian rhythm and its role in cancer development. Disruption of circadian rhythms has been linked to cancer and diabetes as well as depression and sleep disorders.

Forger ran computer simulations of how the tau mutation influenced the mammalian body clock. The tau mutant hamster has a short day. When a simulation used the prevailing theory that the mutation decreased CK1 gene activity, the simulation predicted that the day for the hamster got longer. But when Forger ran a simulation based on the controversial idea that the tau mutation increased activity of the CK1 gene, the day did get shorter, just as it does in real hamsters with the tau mutation.

"So he concluded that the tau mutation must increase, not decrease, the activity of the CK1 gene," contrary to the accepted wisdom, Virshup says.

Few people working in circadian rhythm were convinced that Forger's mathematical model was correct. But the Huntsman Cancer Institute researchers were interested because their experiments also suggested the tau mutation increased rather than decreased activity of the CK1 gene.

Virshup, with members of his lab Monica Gallego, Ph.D.; Erik Eide, Ph.D.; and Margaret Woolf, had used a drug that inhibited CK1 on cultured rat cells. According to the published research, they expected the cells to have a shorter day, just like the mutant hamster. Instead, the cells had a longer day. They were ready to believe that Forger's simulation could be proved.

A simple experiment showed them why the cells' day got longer and why Forger's simulation was correct.

The Virshup lab had already established a way to measure how quickly PER, one of the proteins responsible for running the biological clock, degraded. It is the disappearance of PER and a related protein from cells that resets the body's internal clock to start a new day.

Forger's simulation said the tau mutation would cause PER to go away more quickly. The old model said the mutation caused PER to build up more quickly. Virshup explains: "The mutation can't do both. We put either the normal or the mutant CK1 gene into mouse cells, and then we watched what happened to PER stability."

The results proved Forger's prediction: the circadian rhythm within the mouse cells sped up because the mutant CK1 gene was more active, making the PER protein disappear more quickly. That would explain why a day for an animal with the tau mutation would last only 20 hours.

Virshup says his team has begun development of a mouse model so they can begin to test ways to regulate circadian rhythm based on their findings. That will be a necessary step before new drugs can be developed for disorders related to circadian rhythms.

David Virshup | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>