Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a new diagnostic approach for carriers of recessive genetic disorders

04.07.2006
Disruption of global gene expression patterns in carriers may be a significant source of human variation

Scientists Vivian Cheung and Warren Ewens from the University of Pennsylvania have developed a new approach for the diagnosis of medical disorders that are inherited in a recessive manner. Their method is based on identifying subtle but distinct differences in genome-wide expression profiles using microarray technology. An article describing the approach appears online this week in the journal Genome Research.

As a model for their work, Cheung and Ewens used a rare recessive disease known as Nijmegen breakage syndrome (NBS). Only one gene – called NBS1 – is known to be causative for NBS, although there are multiple disease-initiating variants of this gene in different human populations. Individuals who possess deleterious mutations in both copies of NBS1 exhibit reduced head sizes, slowed growth rates, immunodeficiency, and a predisposition to cancer. Heterozygous carriers – who possess only one copy of the causative gene variant – appear normal, although some reports have suggested that heterozygotes may have an increased risk of cancer.

Using microarray technology, which simultaneously ascertains the expression patterns of thousands of genes, Cheung and Ewens discovered that heterozygous carriers of NBS exhibited distinct gene expression patterns when compared to controls. Of 3,928 genes that were expressed in the NBS carriers and controls, 520 consistently exhibited differences between the two groups.

Cheung and Ewens identified a set of 16 genes whose expression patterns could reliably discriminate between carriers and non-carriers of NBS. The genes could also distinguish carriers of NBS from carriers of a closely related syndrome known as ataxia telangiectasia. Therefore, these 16 predictive genes can be used to develop clinical tests to identify carriers of NBS.

Similar approaches can be extended for developing diagnostic tests for carriers of other recessive genetic disorders. Even though most recessive diseases are rare, many individuals are carriers for recessive genetic disorders: on average, each person is a carrier for three or four deleterious, disease-causing mutations. An approach to effectively identify carriers of these diseases would be welcomed by the medical community, especially in cases where the disease-causing mutation is unknown or uncharacterized at the DNA level.

Based on the results of the study, Cheung and Ewens also suggest that recessive mutations can significantly contribute to human variation. "If each of us is a carrier for three or four harmful recessive mutations, and if the expression levels of several hundred genes are altered for each of these mutations, then heterozygosity for recessive mutations plays a significant role in human variation and in the overall genetic architecture of complex human traits and diseases," explains Cheung.

Maria Smit | EurekAlert!
Further information:
http://www.genome.org)
http://www.cshl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>