Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a new diagnostic approach for carriers of recessive genetic disorders

04.07.2006
Disruption of global gene expression patterns in carriers may be a significant source of human variation

Scientists Vivian Cheung and Warren Ewens from the University of Pennsylvania have developed a new approach for the diagnosis of medical disorders that are inherited in a recessive manner. Their method is based on identifying subtle but distinct differences in genome-wide expression profiles using microarray technology. An article describing the approach appears online this week in the journal Genome Research.

As a model for their work, Cheung and Ewens used a rare recessive disease known as Nijmegen breakage syndrome (NBS). Only one gene – called NBS1 – is known to be causative for NBS, although there are multiple disease-initiating variants of this gene in different human populations. Individuals who possess deleterious mutations in both copies of NBS1 exhibit reduced head sizes, slowed growth rates, immunodeficiency, and a predisposition to cancer. Heterozygous carriers – who possess only one copy of the causative gene variant – appear normal, although some reports have suggested that heterozygotes may have an increased risk of cancer.

Using microarray technology, which simultaneously ascertains the expression patterns of thousands of genes, Cheung and Ewens discovered that heterozygous carriers of NBS exhibited distinct gene expression patterns when compared to controls. Of 3,928 genes that were expressed in the NBS carriers and controls, 520 consistently exhibited differences between the two groups.

Cheung and Ewens identified a set of 16 genes whose expression patterns could reliably discriminate between carriers and non-carriers of NBS. The genes could also distinguish carriers of NBS from carriers of a closely related syndrome known as ataxia telangiectasia. Therefore, these 16 predictive genes can be used to develop clinical tests to identify carriers of NBS.

Similar approaches can be extended for developing diagnostic tests for carriers of other recessive genetic disorders. Even though most recessive diseases are rare, many individuals are carriers for recessive genetic disorders: on average, each person is a carrier for three or four deleterious, disease-causing mutations. An approach to effectively identify carriers of these diseases would be welcomed by the medical community, especially in cases where the disease-causing mutation is unknown or uncharacterized at the DNA level.

Based on the results of the study, Cheung and Ewens also suggest that recessive mutations can significantly contribute to human variation. "If each of us is a carrier for three or four harmful recessive mutations, and if the expression levels of several hundred genes are altered for each of these mutations, then heterozygosity for recessive mutations plays a significant role in human variation and in the overall genetic architecture of complex human traits and diseases," explains Cheung.

Maria Smit | EurekAlert!
Further information:
http://www.genome.org)
http://www.cshl.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>