Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a new diagnostic approach for carriers of recessive genetic disorders

04.07.2006
Disruption of global gene expression patterns in carriers may be a significant source of human variation

Scientists Vivian Cheung and Warren Ewens from the University of Pennsylvania have developed a new approach for the diagnosis of medical disorders that are inherited in a recessive manner. Their method is based on identifying subtle but distinct differences in genome-wide expression profiles using microarray technology. An article describing the approach appears online this week in the journal Genome Research.

As a model for their work, Cheung and Ewens used a rare recessive disease known as Nijmegen breakage syndrome (NBS). Only one gene – called NBS1 – is known to be causative for NBS, although there are multiple disease-initiating variants of this gene in different human populations. Individuals who possess deleterious mutations in both copies of NBS1 exhibit reduced head sizes, slowed growth rates, immunodeficiency, and a predisposition to cancer. Heterozygous carriers – who possess only one copy of the causative gene variant – appear normal, although some reports have suggested that heterozygotes may have an increased risk of cancer.

Using microarray technology, which simultaneously ascertains the expression patterns of thousands of genes, Cheung and Ewens discovered that heterozygous carriers of NBS exhibited distinct gene expression patterns when compared to controls. Of 3,928 genes that were expressed in the NBS carriers and controls, 520 consistently exhibited differences between the two groups.

Cheung and Ewens identified a set of 16 genes whose expression patterns could reliably discriminate between carriers and non-carriers of NBS. The genes could also distinguish carriers of NBS from carriers of a closely related syndrome known as ataxia telangiectasia. Therefore, these 16 predictive genes can be used to develop clinical tests to identify carriers of NBS.

Similar approaches can be extended for developing diagnostic tests for carriers of other recessive genetic disorders. Even though most recessive diseases are rare, many individuals are carriers for recessive genetic disorders: on average, each person is a carrier for three or four deleterious, disease-causing mutations. An approach to effectively identify carriers of these diseases would be welcomed by the medical community, especially in cases where the disease-causing mutation is unknown or uncharacterized at the DNA level.

Based on the results of the study, Cheung and Ewens also suggest that recessive mutations can significantly contribute to human variation. "If each of us is a carrier for three or four harmful recessive mutations, and if the expression levels of several hundred genes are altered for each of these mutations, then heterozygosity for recessive mutations plays a significant role in human variation and in the overall genetic architecture of complex human traits and diseases," explains Cheung.

Maria Smit | EurekAlert!
Further information:
http://www.genome.org)
http://www.cshl.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>