Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a new diagnostic approach for carriers of recessive genetic disorders

04.07.2006
Disruption of global gene expression patterns in carriers may be a significant source of human variation

Scientists Vivian Cheung and Warren Ewens from the University of Pennsylvania have developed a new approach for the diagnosis of medical disorders that are inherited in a recessive manner. Their method is based on identifying subtle but distinct differences in genome-wide expression profiles using microarray technology. An article describing the approach appears online this week in the journal Genome Research.

As a model for their work, Cheung and Ewens used a rare recessive disease known as Nijmegen breakage syndrome (NBS). Only one gene – called NBS1 – is known to be causative for NBS, although there are multiple disease-initiating variants of this gene in different human populations. Individuals who possess deleterious mutations in both copies of NBS1 exhibit reduced head sizes, slowed growth rates, immunodeficiency, and a predisposition to cancer. Heterozygous carriers – who possess only one copy of the causative gene variant – appear normal, although some reports have suggested that heterozygotes may have an increased risk of cancer.

Using microarray technology, which simultaneously ascertains the expression patterns of thousands of genes, Cheung and Ewens discovered that heterozygous carriers of NBS exhibited distinct gene expression patterns when compared to controls. Of 3,928 genes that were expressed in the NBS carriers and controls, 520 consistently exhibited differences between the two groups.

Cheung and Ewens identified a set of 16 genes whose expression patterns could reliably discriminate between carriers and non-carriers of NBS. The genes could also distinguish carriers of NBS from carriers of a closely related syndrome known as ataxia telangiectasia. Therefore, these 16 predictive genes can be used to develop clinical tests to identify carriers of NBS.

Similar approaches can be extended for developing diagnostic tests for carriers of other recessive genetic disorders. Even though most recessive diseases are rare, many individuals are carriers for recessive genetic disorders: on average, each person is a carrier for three or four deleterious, disease-causing mutations. An approach to effectively identify carriers of these diseases would be welcomed by the medical community, especially in cases where the disease-causing mutation is unknown or uncharacterized at the DNA level.

Based on the results of the study, Cheung and Ewens also suggest that recessive mutations can significantly contribute to human variation. "If each of us is a carrier for three or four harmful recessive mutations, and if the expression levels of several hundred genes are altered for each of these mutations, then heterozygosity for recessive mutations plays a significant role in human variation and in the overall genetic architecture of complex human traits and diseases," explains Cheung.

Maria Smit | EurekAlert!
Further information:
http://www.genome.org)
http://www.cshl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>