Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers investigate protein that protects tumors

04.07.2006
A protein that allows breast cancer cells to evade the body's natural immune responses could be a target of future cancer therapies, according to a study by scientists from the Keck School of Medicine of the University of Southern California.

The study, published in the July 1 issue of the American Journal of Pathology, is the first to identify how EphB4 – a protein that sits on the surface of cells – functions.

"The important aspect of this study is that … if we turn the protein [EphB4] off, the tumor cells die, which means that its function helps the cancer cells survive," says Parkash S. Gill, MD, a professor of medicine in the Keck School and the study's senior author.

The scientists used a fluorescent dye attached to the protein's antibody to reveal the protein's location on the tumor cells.

"The first step was to identify whether it's there [on cancer cells] and how often," he explained. "We found that it was present on 60 percent of the tumors … and it's expressed from the very first stage of the cancer formation."

The next step was to determine EphB4's purpose. What the scientists discovered was that EphB4 serves as a sentry, guarding the tumor cells from any defenses the body deploys to attack them.

"There are means in the body to kill tumor cells," Gill says. "[If] you block those then you give the cells the opportunity to survive and grow." Not only did EphB4 block those defenses, but it helped the cancer cells flourish by issuing a call for more blood vessels – the biological equivalent of food for the tumor.

"The tumor cell carrying this protein … on its surface communicates with blood vessels nearby," Gill says. "It sends the signal for more blood vessels to grow. One key item for any cancer to grow is to include more blood vessels."

The goal of a future anti-cancer therapy would be to block the protein, essentially knocking out one of the tumor cell's guardians. A similar approach was used to develop Herceptin, one of the first biological treatments for breast cancer. Herceptin targets the her2 protein, which is found on the surface of tumor cells about 20 percent of the time, says Gill.

The her2 protein played a role in this study as well. That protein, along with several of its cousins, was found to activate EphB4, he said. "There are certain growth factors that can make this particular protein (EphB4) go up," Gill says. "We are learning more about how this protein is turned on and off in a cancer cell."

Kathleen O'Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>