Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Immune Cells with the Built-In Blocker

04.07.2006
The molecule GPR83 can turn killer cells into peacemakers

Researchers in Braunschweig have tracked down a natural inhibitor mechanism in our immune system. The molecule, known as GPR83, can block over-reactions by our immune system's defenses before these damage body tissues, according to scientists at the German Research Centre for Biotechnology (GBF). GPR83 manages to do this by switching immune cells from their aggressive defense posture into a more docile mode. A breakdown of this mechanism, the researchers say, could play a role in auto-immune diseases, such as rheumatoid arthritis or Type-1 diabetes, as well as in host defense against severe infections. A summary of the findings has been published in the most recent issue of the Journal of Immunology.

A constant back-and-forth between the encouragement and inhibition of signals directs the activities of the human immune system. When bacteria or viruses enter the human organism, immune cells must be in a position to act swiftly and effectively against the invaders. That is why immune responses have the tendency to quickly accelerate into overdrive with self-amplifying mechanisms, even when the threat is minor. In the case of a false alarm, this can lead to an attack on the body's own tissue and, in turn, cause serious damage. For this reason, it is indispensable that the immune system has specific inhibitor mechanisms to subdue over-reactions.

T cells are among the most potent defenders of the immune cells, which among others things can kill infected cells. "Some T cells appear to possess a built-in blocker on their surfaces," explains GBF researcher Dr. Wiebke Hansen. "The molecule GPR83 serves as a receptor - as a kind of antenna - that responds to strong immune system over-reactions. When GPR83 is activated, the T cells do not become killers but are transformed into docile regulatory T cells - TREGs for short," says Dr. Hansen. From then on, they induce an immune tolerance by deactivating other T cells. "However, just who in the body is stepping on the brakes, and under what circumstances, still has to be clarified more thoroughly," she says.

For the Braunschweig researchers, studying the functions and impact of the GPR83 T cell inhibitor is promising. "If, at some point, we are able to find a way to stimulate GPR83 with drugs, this could be used to treat over-reactions or malfunctions of the immune system; for example, in the case of auto-immune diseases and chronic inflammations," notes the GBF work group leader, Prof. Jan Buer. By contrast, a targeted blocking of GPR83 would make the immune system more aggressive, and that, says Buer, could some day be interesting for treating severe infections, or for tumor therapy.

Manfred Braun | alfa
Further information:
http://www.gbf.de/presseinformationen

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>