Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ANU scientists crack DNA replication mystery

A team of scientists led by Professor Nick Dixon at the Research School of Chemistry at The Australian National University have cracked one of the great DNA mysteries. For more than 20 years scientists have tried in vain to understand the last step in the copying of DNA in cells that are about to divide.

The research findings were published in the prestigious international journal Cell this morning.

In all cells, DNA is copied by a large molecular machine called the replisome. The replisome does two things: it pulls the two DNA strands apart, and then it makes copies of both of the strands at the same time. "You can think of the strand separation part like a snowplough. The replisome tracks along one of the DNA strands and pushes the other one off it," Professor Dixon said.

In certain bacteria, a small protein called TUS binds to the last part of DNA to be copied in a way that stops the replisome when it faces in one direction, but not in the other. How it can work this way has been a long standing puzzle.

The ANU team finally solved the important question of how TUS stops the replisome in this directional manner. "When the replisome comes along from one direction, separation of the two DNA strands simply knocks the TUS off as you'd expect. But when it comes from the other direction, the strand separation near TUS leads to one of the DNA bases flipping over and inserting itself like a key in a lock in a perfectly shaped pocket on the surface of TUS. TUS is locked onto the DNA and this stops the replisome snowplough in its tracks."

Professor Dixon said the discovery was important "not just because it solved a fundamental scientific question, but also because TUS was found to lock onto the DNA very strongly and in an entirely new way."

"Strong interactions like this have great potential to be used in bio- and nano-technology in fabricating new devices that might for example, be used for early detection of diseases," Professor Dixon said.

"This discovery illustrates once again how the quest for fundamental knowledge can result in unexpected technological progress."

Jane O'Dwyer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>