Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ANU scientists crack DNA replication mystery

03.07.2006
A team of scientists led by Professor Nick Dixon at the Research School of Chemistry at The Australian National University have cracked one of the great DNA mysteries. For more than 20 years scientists have tried in vain to understand the last step in the copying of DNA in cells that are about to divide.

The research findings were published in the prestigious international journal Cell this morning.

In all cells, DNA is copied by a large molecular machine called the replisome. The replisome does two things: it pulls the two DNA strands apart, and then it makes copies of both of the strands at the same time. "You can think of the strand separation part like a snowplough. The replisome tracks along one of the DNA strands and pushes the other one off it," Professor Dixon said.

In certain bacteria, a small protein called TUS binds to the last part of DNA to be copied in a way that stops the replisome when it faces in one direction, but not in the other. How it can work this way has been a long standing puzzle.

The ANU team finally solved the important question of how TUS stops the replisome in this directional manner. "When the replisome comes along from one direction, separation of the two DNA strands simply knocks the TUS off as you'd expect. But when it comes from the other direction, the strand separation near TUS leads to one of the DNA bases flipping over and inserting itself like a key in a lock in a perfectly shaped pocket on the surface of TUS. TUS is locked onto the DNA and this stops the replisome snowplough in its tracks."

Professor Dixon said the discovery was important "not just because it solved a fundamental scientific question, but also because TUS was found to lock onto the DNA very strongly and in an entirely new way."

"Strong interactions like this have great potential to be used in bio- and nano-technology in fabricating new devices that might for example, be used for early detection of diseases," Professor Dixon said.

"This discovery illustrates once again how the quest for fundamental knowledge can result in unexpected technological progress."

Jane O'Dwyer | EurekAlert!
Further information:
http://www.researchaustralia.com.au

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>