Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Cancer's Sweet Tooth Is Effective Strategy Against Tumors

03.07.2006
Mice Lacking Sugar-Metabolizing Pathway Outlive Four-Month Experiment

An ancient avenue for producing cellular energy, the glycolytic pathway, could provide a surprisingly rich target for anti-cancer therapies. A team of Harvard Medical School (HMS) researchers knocked down one of the pathway's enzymes, LDHA, in a variety of fast-growing breast cancer cells, effectively shutting down glycolysis, and implanted the cells in mice. Control animals carrying tumor cells with an intact glycolytic pathway did not survive beyond 10 weeks.

In striking contrast, only two of the LDHA-deficient mice died, one at 16 weeks, another at just over 18 weeks. Eighty percent of the mice outlived the four month experiment. The findings by Valeria Fantin, Julie St-Pierre, and Philip Leder appear in the June Cancer Cell.

"This is an exciting contribution that reveals a surprising Achilles heel in cancer cells. It also adds to our sense of opportunity for new avenues of cancer therapeutics," said Stuart Schrieber, Morris Loeb professor and chair of the Department of Chemistry and Chemical Biology at Harvard University.

As a tumor grows, cells crowd one another and may be cut off from oxygen-carrying blood vessels--a distinct disadvantage since most cells require oxygen to produce the bulk of their energy-storing adenosine triphosphate (ATP). In the 1920s, Otto Warburg proposed that some cancer cells evolved the ability to switch over to an ancient, oxygen-free route, the glycolytic pathway. What is more, they continue to use this pathway even when access to oxygen is restored. Though the so-called Warburg effect has since been confirmed, the role played by glycolysis in cancer has been largely ignored. Few have attempted to attack specific points along the glycolytic pathway to gain a therapeutic effect.

"LDHA could be one weak point that we could attack but maybe, if we understand exactly all the steps involved, we could devise alternative strategies to attack the same pathway," said Fantin, who was an HMS research fellow in genetics when the study was performed. She is currently a research scientist at Merck & Co.

What may excite the growing band of researchers who are studying the Warburg effect, and cancer metabolism more generally, is the way the study resolves a long-standing debate about how and why cells switch to glycolysis in the first place. Warburg speculated that cancer cells change over to glycolysis, which occurs in the cytoplasm, because the mitochondria, where oxygen-dependent ATP synthesis occurs, are defective. But the mitochondria of cancer cells appear to be mostly intact, which led many researchers to minimize the importance of the glycolytic switch.

The mitochondria do display an intriguing difference, however. Normally, mitochondria turn glucose into ATP through the oxygen-dependent process of oxidative phosphorylation (OXPHOS). This results in the expulsion of protons, which lowers the mitochondria's membrane potential. Curiously, the mitochondria of cancer cells exhibit a high membrane potential. Researchers suspected that was because the cells have switched to an alternative means of producing ATP, namely glycolysis, but it was not clear if the glycolytic and mitochondrial pathways were connected in this fashion.

It appears the two pathways are reciprocally linked. Fantin and her colleagues found that by shutting down the glycolytic pathway (through the knock down of LDHA), they could lower the mitochondrial membrane potential of tumor cells. What is more, oxygen consumption increased in the knockdown cells, suggesting they were reverting to the mitochondrial OXPHOS pathwayÑa kind of Warburg effect in reverse.

"The findings provide us with an insight into a mechanism that had been suspected in the last six or seven decades," said Leder, John Emory Andrus professor and chair of the Department of Genetics at HMS. Knocking out the glycolytic pathway could deliver a big blow to tumor cells.

"LDHA could be one weak point that we could attack but maybe, if we understand exactly all the steps involved, we could devise alternative strategies to attack the same pathway," Fantin said.

What makes the prospect of anti-glycolytic therapies even more attractive is their potential safety.

Healthy cells meet 90 percent of their energy needs through OXPHOS. People who lack the LDHA enzyme appear to function normally though they cannot be pushed toward anaerobic exercise.

"They have muscle destruction because they lack an alternative route for producing energy," Fantin said. It is not clear whether they have a lower indidence of cancer.

Also appealing is the idea of combining anti-glycolytic therapies with anti-angiogenic ones.

"If you have a molecule that is very stable you could think about delivering it first, obliterating the glycolytic pathway," said Fantin. Angiogenesis inhibitors would wipe out blood vessels and the oxygen supply with it, leaving the cells with no way to cope. "There is definite potential to combining these things," she said.

Contact:
Judith Montminy or Misia Landau
Harvard Medical School
617-432-0442
(public_affairs@hms.harvard.edu)

Judith Montminy | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>