Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fruit fly protein illuminates circadian response to light

03.07.2006
Researchers at the University of Pennsylvania School of Medicine have identified a new protein required for the circadian response to light in fruit flies. The discovery of this protein – named JET – brings investigators one step closer to understanding the process by which the body's internal clock synchronizes to light. Understanding how light affects circadian (24-hour) rhythms will likely open doors to future treatments of jetlag.

The body's 24-hour clock controls a multitude of internal functions such as periods of sleep and wakefulness, body temperature, and metabolism. Although circadian function produces a stable rhythm in the body, the biological clock will reset in response to light. The human condition known as jet lag takes place during the period when the body is attempting to resynchronize to the environmental light changes brought on by travel, namely from one time zone to another.

A mutant fruit fly that possesses jetlag-like behaviors enabled senior author Amita Sehgal, PhD, Professor of Neuroscience at Penn and a Howard Hughes Medical Institute (HHMI) Investigator, and colleagues to identify the gene and subsequent protein that aids in the response of the internal biological clock to light. The researchers report their findings in most recent issue of Science.

To test the circadian rhythm of fruit flies, Sehgal and others exposed wild type (control) and mutant flies to several light and dark settings – constant darkness, constant light, and equal periods of light and darkness (a light-dark cycle). During exposure to constant light for one week, the controls developed a disrupted sleep pattern after a few days, while the mutants maintained a regular circadian rhythm. The mutant and control flies displayed no behavioral differences during their exposure to constant darkness and the light-dark cycle. However, when the fruit flies were shifted from one light-dark cycle to another, the mutant flies took two days longer to adjust their sleep-wake cycle to the new light-dark schedule.

"The behavior of the mutant flies is similar to that displayed in a person who has prolonged jetlag," notes Sehgal. In search of answers to the mutant's defective circadian response to light, Sehgal and colleagues looked to the molecular details of the clock cells in the jetlag flies.

When a fruit fly is exposed to light, a photoreceptor called cryptochrome (CRY) transduces the light signal and kicks off a series of reactions within the clock cells of the brain. Under normal conditions, CRY will respond to light by binding to a protein called timeless (TIM). A second protein, a member of the F-box protein family, also binds to TIM, signaling TIM for cellular destruction.

Genetic analysis revealed that the jetlag flies possess a mutation in a gene that encodes a member of the F-box protein family. A closer examination of the protein produced by the mutated sequence led researchers to JET, a new protein within the F-box protein family.

"Since the degradation of TIM always happens in the presence of light, the animal associates the absence of TIM with daytime hours," explains Sehgal. The mutated JET protein reduces the light-dependent degradation of TIM and the circadian response to light.

Sehgal and others were able to reverse the behaviors in the jetlag flies by genetically replacing the mutated gene sequence with the normal sequence, which led to the production of the wild-type (control) JET protein. When the jetlag flies acquired the normal JET protein, regular TIM degradation took place and the fruit fly was better able to adjust to shifts in the light-dark cycle.

Future studies in the Sehgal lab will focus on continuing to identify other molecules required for the circadian response to light. "Some of the molecules required for the circadian light response in flies may be conserved in humans. Over time, we will have a better understanding of how the human clock responds to light and may be able to design drugs to treat jetlag," concludes Sehgal.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>