Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers discover immune system blocker at work in kidney cancer

03.07.2006
May predict outcomes, provide new treatment target

Mayo Clinic researchers have discovered a new and deadly player in the most common form of kidney cancer. They've shown that the molecule B7-H4 helps renal cell carcinoma (RCC) grow and spread by blocking the immune system. The Mayo researchers found that when B7-H4 is active, RCC patients are three times as likely to die from their cancer as RCC patients whose tumors don't express B7-H4.

The findings may one day help physicians predict patient outcome and direct treatment, as well as serve as a target at which to aim new and better therapies for this most lethal urologic malignancy. The findings appear in the current early online edition of Proceedings of the National Academy of Science (http://www.pnas.org/papbyrecent.shtml).

Renal cell carcinoma accounts for 85 percent of all kidney cancers. In the United States, an estimated 35,000 patients are diagnosed with kidney cancer and about 12,000 die from this disease every year. It most commonly occurs in people who are between 50 and 70 years old, and is the eighth most common cancer in men and the 10th most common cancer in women.

Significance of the Mayo Clinic Research

The Mayo researchers uncovered three potentially useful roles for B7-H4:

* As a biomarker for RCC -- A biomarker is an indicator that communicates a consistent message to scientists that they can use to plot a course of action. In this case, the message is that cells with active B7-H4 are the most aggressive cancers and need immediate and powerful treatment. Cancer specialists can use this information to quickly match patients with the best form of therapy. Many different biomarkers have been explored; however, few show this type of diagnostic power.

* As a target for future therapies -- Mayo Clinic discovered that nearly 82 percent of RCC tumors have active B7-H4 on the blood vessels that nourish tumors, compared to only 6.5 percent of nearby normal renal tissues showing B7-H4. If researchers can design cancer-killing drugs that can target B7-H4 on the tumor vessel, they could cut off the tumor's lifeline.

* As a deadly collaborator -- With other members of the B7 family, notably B7-H1, B7-H4 combines forces to block the immune system. The Mayo Clinic team showed that RCC tumors expressing both B7-H4 and B7-H1 pose an even greater threat of death than tumors that express one or the other alone.

"Based on these findings, we conclude that B7-H4 has the potential to be a useful prognostic biomarker for patients with RCC," says investigator Amy Krambeck, M.D. "In addition, B7-H4 represents a new target to attack tumor cells as well as tumor vessels, thus improving treatment options for patients with RCC."

"For years, researchers have wondered how kidney cancer can disable an attack by the body's immune system," adds co-investigator R. Houston Thompson, M.D. "Our data help explain how kidney tumors shut down the immune system, which may lead to enhanced targeted therapies for this refractory tumor."

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.pnas.org/papbyrecent.shtml

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>