Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find molecular 'brake' to cell death

Researchers at The University of Texas M. D. Anderson Cancer Center have significantly refined the scientific understanding of how a cell begins the process of self-destruction - an advance they say may help in the design of more targeted cancer therapies.

In the June 30 issue of the journal Cell, the research team found that a natural "brake" exists in a cell to prevent it from undergoing apoptosis, or programmed cell death, and they say that optimal anti-cancer therapies should take a two-pronged approach to overriding this brake in order to force a tumor cell to die. Very few drugs do this now, they say.

The discovery "demonstrates that apoptosis is more complicated than had been believed, and consequently harder to achieve," says the study's lead author, Dean G. Tang, Ph.D., associate professor in the Department of Carcinogenesis in the Science Park Research Division of M. D. Anderson in Smithville, Texas.

Apoptosis can occur when a cell has reached its lifespan, and so is "programmed" to die, or is initiated when a cell is damaged beyond repair or infected by a virus. Apoptosis is rare in cancer because tumor cells have adapted biological pathways to circumvent cell death, so many anti-cancer therapies focus on inducing apoptosis in these cells, Tang says.

But the notion of how to push cancer cells to die has been flawed, Tang says. These new findings "overturn a scientific dogma so long accepted that it has become a textbook standard when talking about apoptosis," he continues.

Researchers agree that the seminal event that leads to initiation of apoptosis is the release of a key protein known as cytochrome c (CC) from a cell's mitochondria, the organelle's energy storehouse. These molecules then bind to another protein called Apaf-1 in the cell cytoplasm, and together they form a scaffolding "death wheel" to activate enzymes called caspases that shred a cell apart.

But what they also believed is that a cell needs extra energy from ATP to undergo apoptosis, and that this extra energy was produced from the "pools" of free nucleotides that exist in the cell cytoplasm. Nucleotides are the primary structural chemical units that make up DNA, RNA and proteins, and they combine to play a variety of roles in the cell, such as formation of ATP.

However, through a series of biological and biochemical experiments, Tang and his research team found that adding ATP to a cancer cell could potentially impede apoptosis. They discovered that these nucleotide pools, in fact, act not to promote apoptosis through production of ATP, but to hinder it. They are "pro-survival factors" that prevent CC, when released from the mitochondria, from "seeing" Apaf-1 in the cytoplasm, Tang says.

"When we induced some cell stress and damage, the low levels of CC that came out from the mitochondria were ineffective because they are sequestered by an ocean of free nucleotides and ATP," he says. "No one had ever realized this kind of barrier existed to impede apoptosis."

They found that cell mitochondria needed to release a large and sustained volume of CC to overcome this nucleotide barrier, and they also found evidence that as soon as the release of CC increases, another mechanism kicks in that simultaneously begins to reduce the size of the nucleotide pool to allow CC to bind to Apaf-1, Tang says.

The researchers say this kind of strategy makes sense for the cell, because it acts like a biological fail-safe system to protect against the errant release of CC from malfunctioning mitochondria. A large pool of free nucleotides along with complete ATP molecules normally exists in a healthy cell so that just a little CC could not mistakenly push the cell to self destruct, Tang says. "When CC is still limited in the cell, perhaps through an accidental release, the nucleotide pool will neutralize the CC so that the cell can stay alive," he says. "So, in a way, it takes a large amount of CC to convince the cell that the damage is real, and that is what you see when cardiac cells die after a heart attack, for example."

This finding has direct implications for anti-cancer therapy, Tang says, suggesting how current therapy could be both inefficient and lead to resistance in a cell.

"Many cancer drugs focus on pushing the mitochondria to release CC, and not on reducing the nucleotide pool, and our new model suggests that decreasing this pool is essential to produce sensitivity in cancer cells to apoptosis," Tang says.

Cancers that quickly become resistant to therapy, such as melanoma and ovarian tumors, do so because they have found ways to prevent mitochondria from releasing a lot of CC, he says. Tumor cells also don't want to decrease their nucleotide pool, because they need ATP for continued functioning, he says.

"An optimal cancer therapy should combine both strategies," Tang says. "They should maximize release of CC and maximize the decrease of nucleotide levels."

Some chemotherapy drugs, like paclitaxel, cisplatin and etoposide, appear, coincidentally and perhaps inadvertently, to do both, and are very effective for specific cancers, he says. "But based on these new findings, we now have a new theoretical approach that can be used to help in the design of more targeted chemotherapy drugs," Tang says. "This will change the way that scientists now think about the role of nucleotides in cancer therapy."

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>