Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecular 'brake' to cell death

03.07.2006
Researchers at The University of Texas M. D. Anderson Cancer Center have significantly refined the scientific understanding of how a cell begins the process of self-destruction - an advance they say may help in the design of more targeted cancer therapies.

In the June 30 issue of the journal Cell, the research team found that a natural "brake" exists in a cell to prevent it from undergoing apoptosis, or programmed cell death, and they say that optimal anti-cancer therapies should take a two-pronged approach to overriding this brake in order to force a tumor cell to die. Very few drugs do this now, they say.

The discovery "demonstrates that apoptosis is more complicated than had been believed, and consequently harder to achieve," says the study's lead author, Dean G. Tang, Ph.D., associate professor in the Department of Carcinogenesis in the Science Park Research Division of M. D. Anderson in Smithville, Texas.

Apoptosis can occur when a cell has reached its lifespan, and so is "programmed" to die, or is initiated when a cell is damaged beyond repair or infected by a virus. Apoptosis is rare in cancer because tumor cells have adapted biological pathways to circumvent cell death, so many anti-cancer therapies focus on inducing apoptosis in these cells, Tang says.

But the notion of how to push cancer cells to die has been flawed, Tang says. These new findings "overturn a scientific dogma so long accepted that it has become a textbook standard when talking about apoptosis," he continues.

Researchers agree that the seminal event that leads to initiation of apoptosis is the release of a key protein known as cytochrome c (CC) from a cell's mitochondria, the organelle's energy storehouse. These molecules then bind to another protein called Apaf-1 in the cell cytoplasm, and together they form a scaffolding "death wheel" to activate enzymes called caspases that shred a cell apart.

But what they also believed is that a cell needs extra energy from ATP to undergo apoptosis, and that this extra energy was produced from the "pools" of free nucleotides that exist in the cell cytoplasm. Nucleotides are the primary structural chemical units that make up DNA, RNA and proteins, and they combine to play a variety of roles in the cell, such as formation of ATP.

However, through a series of biological and biochemical experiments, Tang and his research team found that adding ATP to a cancer cell could potentially impede apoptosis. They discovered that these nucleotide pools, in fact, act not to promote apoptosis through production of ATP, but to hinder it. They are "pro-survival factors" that prevent CC, when released from the mitochondria, from "seeing" Apaf-1 in the cytoplasm, Tang says.

"When we induced some cell stress and damage, the low levels of CC that came out from the mitochondria were ineffective because they are sequestered by an ocean of free nucleotides and ATP," he says. "No one had ever realized this kind of barrier existed to impede apoptosis."

They found that cell mitochondria needed to release a large and sustained volume of CC to overcome this nucleotide barrier, and they also found evidence that as soon as the release of CC increases, another mechanism kicks in that simultaneously begins to reduce the size of the nucleotide pool to allow CC to bind to Apaf-1, Tang says.

The researchers say this kind of strategy makes sense for the cell, because it acts like a biological fail-safe system to protect against the errant release of CC from malfunctioning mitochondria. A large pool of free nucleotides along with complete ATP molecules normally exists in a healthy cell so that just a little CC could not mistakenly push the cell to self destruct, Tang says. "When CC is still limited in the cell, perhaps through an accidental release, the nucleotide pool will neutralize the CC so that the cell can stay alive," he says. "So, in a way, it takes a large amount of CC to convince the cell that the damage is real, and that is what you see when cardiac cells die after a heart attack, for example."

This finding has direct implications for anti-cancer therapy, Tang says, suggesting how current therapy could be both inefficient and lead to resistance in a cell.

"Many cancer drugs focus on pushing the mitochondria to release CC, and not on reducing the nucleotide pool, and our new model suggests that decreasing this pool is essential to produce sensitivity in cancer cells to apoptosis," Tang says.

Cancers that quickly become resistant to therapy, such as melanoma and ovarian tumors, do so because they have found ways to prevent mitochondria from releasing a lot of CC, he says. Tumor cells also don't want to decrease their nucleotide pool, because they need ATP for continued functioning, he says.

"An optimal cancer therapy should combine both strategies," Tang says. "They should maximize release of CC and maximize the decrease of nucleotide levels."

Some chemotherapy drugs, like paclitaxel, cisplatin and etoposide, appear, coincidentally and perhaps inadvertently, to do both, and are very effective for specific cancers, he says. "But based on these new findings, we now have a new theoretical approach that can be used to help in the design of more targeted chemotherapy drugs," Tang says. "This will change the way that scientists now think about the role of nucleotides in cancer therapy."

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>