Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brittle prions are more infectious

30.06.2006
Brittleness is often seen as a sign of fragility. But in the case of infectious proteins called prions, brittleness makes for a tougher, more menacing pathogen. Howard Hughes Medical Institute researcher have discovered that brittle prion particles break more readily into new "seeds," which spread infection much more quickly.

The discovery boosts basic understanding of prion infections, and could provide scientists with new ideas for designing drugs that discourage or prevent prion seeding, said the study's senior author Jonathan Weissman, a Howard Hughes Medical Institute investigator at the University of California, San Francisco (UCSF).

Weissman and colleagues from UCSF reported their findings on June 28, 2006, in an advance online publication in Nature.

The scientists studied yeast prions, which are similar to mammalian prions in that they act as infectious proteins. In recent years, mammalian prions have gained increasing notoriety for their roles in such fatal brain-destroying human diseases as Creutzfeldt-Jakob disease and kuru, and in the animal diseases, bovine spongiform encephalopathy ("mad cow" disease) and scrapie.

Yeast and mammalian prions are proteins that transmit their unique characteristics via interactions in which an abnormally shaped prion protein influences a normal protein to assume an abnormal shape. In mammalian prion infections, these abnormal shapes trigger protein clumping that can kill brain cells. In yeast cells, the insoluble prion protein is not deadly; it merely alters a cell's metabolism. Prions propagate themselves by division of the insoluble clumps to create "seeds" that can continue to grow by causing aggregation of more proteins.

In earlier studies, Weissman and his colleagues had discovered that the same prion can exist in different strains and have different infectious properties. These strains arise from different misfoldings of the prion protein that result in different conformations. A similar strain phenomenon has been described for mammalian prions. More generally, even in noninfectious diseases involving protein misfolding, like Alzheimer's and Parkinson's diseases, the same protein can misfold into more than one shape with some forms being toxic and others benign. However, Weissman said, it was not understood how different conformations cause different physiological effects.

As part of the studies published in Nature, the researchers created a mathematical model that enabled them to describe the growth and replication of prions according to the physical properties of the prion protein. To validate that model in yeast, they then created in a test tube, infectious forms of the prion protein in three different conformations and introduced them into yeast cells. They then correlated the strength of infectivity of each prion with its physical properties and compared their results to those predicted by their mathematical model.

According to Weissman, the researchers found that the slowest-growing conformation seemed to have the strongest effect in producing protein aggregates inside cells. "But we knew from our model that growth was only half of the equation," said Weissman. "The other key feature was how easy it was to break up the prion and create new seeds, and this propensity to seed could be an important determinant of the prion's physiological impact. And that is what we found experimentally -- that the slower growth of that conformation was more than compensated for by an increased brittleness that promotes fragmentation."

According to Weissman, the importance of a prion's brittleness, or "frangibility," to its physiological effects has both basic research and clinical implications. "Investigators trying to develop synthetic prions as a research model for mammalian prions have had a very hard time getting a high degree of activity," he said. "Part of the reason may be that they were trying to create forms that were very stable. But that might have been exactly the wrong thing to do, because prions that are too stable may be the ones that are not very infectious because the aggregates are hard to break up.

"And from a therapeutic point of view, our findings suggest that effective treatment strategies for prion diseases might aim at stabilizing prion aggregates. By preventing the aggregates from being broken up to smaller seeds, their propagation can be reduced. In contrast, most such strategies now aim at preventing the proteins from forming in the first place," he said.

In future studies, Weissman and his colleagues plan to expand their analytical model to describe in more detail how prions' physical properties lead to different physiological effects. They also plan more detailed analyses to examine how the molecular structure of a prion protein gives rise to its physical properties.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>