Campus Vienna Biocenter: Training & Dissemination Centre on RNA Viruses launched

Integrated Projects (IP) are one of the largest EU-Research instruments under the outgoing 6th Framework Programme. The Vizier IP on RNA viruses received funding of more than EUR 12 Mio. and is with its 25 participating laboratories from 12 nations a good example for the large size of this kind of project. While the collaboration of so many participants will certainly generate novel ideas and solutions to scientific problems it also requires proactive dissemination of this – even within the project.

Know-How to Disseminate

With the establishment of a centre entirely dedicated to training and dissemination Vizier demonstrates strong commitment to this end. The TDcentre is located at the Department of Biomolecular Structural Chemistry that is member of both, the Faculty of Chemistry at the University of Vienna and the Max F. Perutz Laboratories. Here the TDcentre will offer congresses, workshops and training courses. The department's Group Leader in Macromolecular Crystallography and TDcentre's manager Prof. Kristina Djinovic-Carugo commented: “During the next two and a half years our TDcentre targets both the Vizier participants and the wider scientific community. By doing so we share scientific facts and in-depth details of methodologies prior to publication. This, as well as the face-to-face interaction, will significantly accelerate the scientific progress in the study of RNA viruses.”

RNA viruses are the causative agent of serious diseases such as ebola, yellow fever, HIV, hepatitis and of common infections such as influenza and colds. Vizier will identify new therapeutic targets of RNA viruses by carefully analyzing its replicative machinery. Although virus-specific, the replicative machinery is essential for the virus' propagation and offers an attractive target for novel therapies.

Small Target – Big Impact

In order to identify the parts of the replicative machinery where therapies will be most efficient Vizier will analyze the structure of the relevant proteins at very high resolutions. To meet this challenge, Vizier is also developing and validating new tools for X-ray crystallography and protein production. This strong focus on structural analysis was one of the main reasons for appointing the Viennese Dept. of Biomolecular Structural Chemistry as TDcentre. The department is internationally recognized for its strength in optical and Nuclear Magnetic Resonsance (NMR) spectroscopy, crystallography and bioinformatics.

Already during the kick-off workshop of Vizier's TDcentre at the Department, key issues regarding the structural analysis of protein domains were discussed. Entitled “Definition of Protein Domains and Their Likelihood of Crystallization” the workshop attracted over 80 participants from 15 nations. During the workshops' three days and 18 events between 28th – 30th of June, all participants agreed that this kind of direct dissemination of scientific advances within a project is a very important step for accelerating scientific progress.

Media Contact

Till C. Jelitto alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors