Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Campus Vienna Biocenter: Training & Dissemination Centre on RNA Viruses launched

30.06.2006
A newly established Training and Dissemination Centre (TDcentre) will contribute significantly to the rapid diffusion of scientific knowledge that is being generated by an EU-Integrated Project on RNA Viruses. The TDcentre has now launched its activities with a workshop at the Campus Vienna Biocenter on 28. June. Participants from 15 countries exchanged ideas and facts about the structural analysis of protein domains.

Integrated Projects (IP) are one of the largest EU-Research instruments under the outgoing 6th Framework Programme. The Vizier IP on RNA viruses received funding of more than EUR 12 Mio. and is with its 25 participating laboratories from 12 nations a good example for the large size of this kind of project. While the collaboration of so many participants will certainly generate novel ideas and solutions to scientific problems it also requires proactive dissemination of this – even within the project.

Know-How to Disseminate

With the establishment of a centre entirely dedicated to training and dissemination Vizier demonstrates strong commitment to this end. The TDcentre is located at the Department of Biomolecular Structural Chemistry that is member of both, the Faculty of Chemistry at the University of Vienna and the Max F. Perutz Laboratories. Here the TDcentre will offer congresses, workshops and training courses. The department's Group Leader in Macromolecular Crystallography and TDcentre's manager Prof. Kristina Djinovic-Carugo commented: "During the next two and a half years our TDcentre targets both the Vizier participants and the wider scientific community. By doing so we share scientific facts and in-depth details of methodologies prior to publication. This, as well as the face-to-face interaction, will significantly accelerate the scientific progress in the study of RNA viruses."

RNA viruses are the causative agent of serious diseases such as ebola, yellow fever, HIV, hepatitis and of common infections such as influenza and colds. Vizier will identify new therapeutic targets of RNA viruses by carefully analyzing its replicative machinery. Although virus-specific, the replicative machinery is essential for the virus' propagation and offers an attractive target for novel therapies.

Small Target - Big Impact

In order to identify the parts of the replicative machinery where therapies will be most efficient Vizier will analyze the structure of the relevant proteins at very high resolutions. To meet this challenge, Vizier is also developing and validating new tools for X-ray crystallography and protein production. This strong focus on structural analysis was one of the main reasons for appointing the Viennese Dept. of Biomolecular Structural Chemistry as TDcentre. The department is internationally recognized for its strength in optical and Nuclear Magnetic Resonsance (NMR) spectroscopy, crystallography and bioinformatics.

Already during the kick-off workshop of Vizier's TDcentre at the Department, key issues regarding the structural analysis of protein domains were discussed. Entitled "Definition of Protein Domains and Their Likelihood of Crystallization" the workshop attracted over 80 participants from 15 nations. During the workshops' three days and 18 events between 28th - 30th of June, all participants agreed that this kind of direct dissemination of scientific advances within a project is a very important step for accelerating scientific progress.

Till C. Jelitto | alfa
Further information:
http://www.mfpl.ac.at/index.php?cid=58
http://www.prd.at

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>