Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Ford’s idea revisited in DNA copying

30.06.2006
Researchers at the University of Dundee have made a significant new discovery about how cells copy their genetic information accurately and efficiently to avoid cancers and other diseases, as reported in the scientific journal Cell, published on 30th June.

Dr Tomo Tanaka, Professor Julian Blow and their team member Dr Etsushi Kitamura at the University’s School of Life Sciences, discovered that, contrary to conventional views, the machinery that copies DNA stays fixed inside the cell whilst the DNA being copied has to move.

DNA is a string-like material found in our cells, which encodes all our genetic information. For the genetic information to be properly inherited, a cell must copy its DNA using a specialized copying machine before it can divide into two daughter cells. It was originally thought that the DNA copying machine moves along the DNA as it is copied.

Dr Tomo Tanaka says “We can liken the process that we have discovered in cells to an assembly line for making cars, invented by Henry Ford and his engineers. It was a revolutionary idea in industry that products move along a line and engineers stay at fixed places to assemble them. This achieved much more accuracy and efficiency in manufacturing products.”

“Similarly cells can copy DNA accurately and efficiently by moving it through a stationary copying machine, rather than by moving the copying machinery along stationary DNA. Because errors in DNA copying cause human diseases such as cancers, it is crucial to understand how our cells organize the copying of DNA in space and time”.

Dr Tomo Tanaka and Professor Julian Blow are Principal Investigators in the Division of Gene Regulation and Expression in School of Life Sciences at the University of Dundee.

Professor Angus Lamond, Head of the Division of Gene Regulation and Expression said “Cancer is a disease caused by cells dividing and multiplying out of control. This latest advance is a wonderful example of how genetic research in Dundee is leading the way in understanding how cells divide and therefore helps us understand the basic causes of cancer. Future cancer treatments will build upon this improved understanding of what has gone wrong."

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht If solubilty is the problem - Mechanochemistry is the solution
25.05.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018 | Life Sciences

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018 | Interdisciplinary Research

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>