Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Ford’s idea revisited in DNA copying

30.06.2006
Researchers at the University of Dundee have made a significant new discovery about how cells copy their genetic information accurately and efficiently to avoid cancers and other diseases, as reported in the scientific journal Cell, published on 30th June.

Dr Tomo Tanaka, Professor Julian Blow and their team member Dr Etsushi Kitamura at the University’s School of Life Sciences, discovered that, contrary to conventional views, the machinery that copies DNA stays fixed inside the cell whilst the DNA being copied has to move.

DNA is a string-like material found in our cells, which encodes all our genetic information. For the genetic information to be properly inherited, a cell must copy its DNA using a specialized copying machine before it can divide into two daughter cells. It was originally thought that the DNA copying machine moves along the DNA as it is copied.

Dr Tomo Tanaka says “We can liken the process that we have discovered in cells to an assembly line for making cars, invented by Henry Ford and his engineers. It was a revolutionary idea in industry that products move along a line and engineers stay at fixed places to assemble them. This achieved much more accuracy and efficiency in manufacturing products.”

“Similarly cells can copy DNA accurately and efficiently by moving it through a stationary copying machine, rather than by moving the copying machinery along stationary DNA. Because errors in DNA copying cause human diseases such as cancers, it is crucial to understand how our cells organize the copying of DNA in space and time”.

Dr Tomo Tanaka and Professor Julian Blow are Principal Investigators in the Division of Gene Regulation and Expression in School of Life Sciences at the University of Dundee.

Professor Angus Lamond, Head of the Division of Gene Regulation and Expression said “Cancer is a disease caused by cells dividing and multiplying out of control. This latest advance is a wonderful example of how genetic research in Dundee is leading the way in understanding how cells divide and therefore helps us understand the basic causes of cancer. Future cancer treatments will build upon this improved understanding of what has gone wrong."

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>