Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues for treatment of liver cancer

29.06.2006
Study implicates two human genes in the third leading cause of cancer deaths

By generating tumors in laboratory mice that mimic human liver cancer and by comparing the DNA of mouse and human tumors, researchers at Cold Spring Harbor Laboratory have identified two genes that are likely to play a role in the third leading cause of human cancer deaths. The study also establishes an efficient and adaptable method for exploring the biology of liver cancer, for validating potential therapeutic targets, and for testing new treatments. The findings are reported in tomorrow's issue of the journal Cell (June 30).


"There has been a long search for animal models that could be predictive of the genes involved in human cancers. These researchers have taken a large step forward in this search and are on a clear path to proving that well-designed animal models can precisely reflect the events observed in human cancers," said Arnold J. Levine of The Institute for Advanced Studies, who was not involved in the study.

Liver cancer ("hepatocellular carcinoma" or HCC) is the fifth most frequent neoplasm worldwide. However, owing to the lack of effective treatment options, it is the third leading cause of cancer deaths.

To gain a better understanding of the molecular causes of HCC, the researchers--led by Scott Lowe of Cold Spring Harbor Laboratory--devised a strategy for genetically engineering liver stem cells, harvested from mouse embryos, and subsequently transplanting the cells into adult mice. Following transplantation (by injection into the spleen), the cells can become part of the recipient mouse's liver.

Depending on the initial, genetically engineered makeup of the liver stem cells, and on genetic alterations that occur spontaneously after they are transplanted, the cells can have a high probability of forming tumors. Scanning the DNA of such tumors has the potential to uncover the relevant spontaneous genetic alterations and reveal the corresponding genes that, when altered, contribute to liver cancer.

In one set of experiments, the scientists engineered the liver stem cells in three ways, two of which were designed to mimic the genetic lesions that are known to occur in human liver and other cancers (namely, deletion of the p53 gene and activation of the Myc gene). A third genetic modification (the insertion of a gene that encodes a fluorescent marker protein) enabled the researchers to visualize the transplanted cells, and their descendants, in the adult mice.

Transplanted cells lacking the p53 gene and bearing an activated version of the Myc gene rapidly gave rise to aggressive, invasive liver tumors. Scanning the DNA of these tumors revealed that a specific segment of mouse chromosome 9 was amplified--or present in excess copies--compared to the DNA of healthy mouse liver cells.

Because this segment of mouse DNA carried several genes, the researchers turned to the human genome to help them narrow down which gene (or genes, as it turned out) was the culprit in liver cancer.

In parallel with their analysis of the mouse liver tumors, the researchers scanned the DNA of human liver and other tumors. Remarkably, they found that a region of human chromosome 11 that is evolutionarily related to the segment of mouse chromosome 9 was amplified in several of the human tumors.

Additional experiments revealed that two genes--Yap and cIAP1--were both consistently overexpressed in both the mouse and human tumors. Thus, when produced at abnormally high levels, proteins encoded by the Yap and cIAP1 genes are likely to contribute significantly to human liver and other cancers.

The study also revealed that whereas producing either the Yap or the cIAP1 protein at an abnormally high level triggers tumor formation in mice, simultaneously overproducing both proteins dramatically accelerates tumor formation. Therefore, these proteins and others in the biochemical pathways they control are attractive candidates for the development of novel cancer therapies.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>