Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals unexpected post-mating gene expression in model lab insect

29.06.2006
That cloud of tiny flies hovering around spoiled fruit isn't just a nuisance. In fact, what science calls Drosophila melanogaster is more and more the key to intricate genetic studies that shed light on numerous biological processes, especially reproduction.

Now, evolutionary and developmental biologists at the University of Georgia and the Hebrew University of Jerusalem have uncovered evidence that after fruit flies mate, the presence of sperm and male proteins in the female's reproductive tract sets off an amazing cascade of heretofore undescribed gene activity. Understanding how this works will give scientists new insights into reproduction, but it could also provide methods to safely control the spread of insect pests by interfering with their reproduction.

"We have been able to define a large number of mating-responsive genes that are activated in Drosophila," said Michael Bender, a developmental biologist in the department of genetics at UGA. "There is a lot of potential in this work for uncovering basic aspects of reproductive biology that will be useful in pest-control approaches."

The research was just published in the online edition of the Proceedings of the National Academy of Sciences. The work resulted from a collaboration between Bender, Paul Mack, a postdoctoral fellow in the Bender lab at UGA, Yael Heifetz of Hebrew University and Anat Kapelnikov, a graduate student in the Heifetz lab. A number of undergraduates at UGA also worked on the research.

Drosophila has been used as a model animal for nearly a century. It is easy to manipulate in a lab, lives only a few weeks and begins mating soon after hatching. Its entire genetic map or genome has also been sequenced, giving researchers a powerful tool in understanding intricate biological processes and the genes that direct them.

Bender's team, using both the established genomic background of Drosophila and studies of mating insects, showed that the sperm and proteins transferred from males to females during mating have "profound effects" on female gene expression. Most surprising is that gene activity rapidly escalates about six hours after mating--something previously unknown.

"We looked at the reproductive tracts of females at three, six and 24 hours post-mating," said Mack. "Just getting enough material through dissection is extremely difficult and time-consuming, but this kind of time-based evaluation of post-mating gene expression in Drosophila had never been done."

Perhaps surprisingly, very little is known about how gene expression in female reproductive tissues changes in response to the presence of sperm and male molecules. The study compared 3-day-old mated and unmated females and discovered the presence in mated females of a startling 539 genes whose activity changes after mating.

"One novel feature of this research was Paul's decision to look at what happens over time," said Bender. "That's how we found out that the activity hits a peak six hours after mating. This indicates quite a large genetic response in the female tract to male-derived molecules and sperm."

Though considerable research has been done on male Drosophila over the years, relatively little had focused on females. Just why the array of gene expression peaks at 6 hours is not yet clear, but revealing this timing could help in controlling insect pests. That is one reason the research was funded by the Binational Agricultural Research and Development (BARD) Fund, a joint program between the United States and Israel. Since 1979, BARD has funded nearly 900 research projects in almost all 50 states. Support for the research also came from The National Institutes of Health.

The Bender and Heifetz teams weren't operating in the dark, since earlier studies had examined some post-mating gene expression in Drosophila, but that earlier work did not examine expression over a set time period and involved examining the whole bodies of mated insects, not just their reproductive tracts.

The researchers' double approach using genomics and proteomics--the study of proteins and the products they turn on--was especially productive because it allowed them to identify genes they would not have found using a single approach.

"The next step will be to choose a few of the most promising genes and to explore their function in females," said Bender.

Once the gene functions are known, then scientists can begin to examine how to manipulate them--both to study the biology involved and to find potential targets for pest control.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>