Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals unexpected post-mating gene expression in model lab insect

29.06.2006
That cloud of tiny flies hovering around spoiled fruit isn't just a nuisance. In fact, what science calls Drosophila melanogaster is more and more the key to intricate genetic studies that shed light on numerous biological processes, especially reproduction.

Now, evolutionary and developmental biologists at the University of Georgia and the Hebrew University of Jerusalem have uncovered evidence that after fruit flies mate, the presence of sperm and male proteins in the female's reproductive tract sets off an amazing cascade of heretofore undescribed gene activity. Understanding how this works will give scientists new insights into reproduction, but it could also provide methods to safely control the spread of insect pests by interfering with their reproduction.

"We have been able to define a large number of mating-responsive genes that are activated in Drosophila," said Michael Bender, a developmental biologist in the department of genetics at UGA. "There is a lot of potential in this work for uncovering basic aspects of reproductive biology that will be useful in pest-control approaches."

The research was just published in the online edition of the Proceedings of the National Academy of Sciences. The work resulted from a collaboration between Bender, Paul Mack, a postdoctoral fellow in the Bender lab at UGA, Yael Heifetz of Hebrew University and Anat Kapelnikov, a graduate student in the Heifetz lab. A number of undergraduates at UGA also worked on the research.

Drosophila has been used as a model animal for nearly a century. It is easy to manipulate in a lab, lives only a few weeks and begins mating soon after hatching. Its entire genetic map or genome has also been sequenced, giving researchers a powerful tool in understanding intricate biological processes and the genes that direct them.

Bender's team, using both the established genomic background of Drosophila and studies of mating insects, showed that the sperm and proteins transferred from males to females during mating have "profound effects" on female gene expression. Most surprising is that gene activity rapidly escalates about six hours after mating--something previously unknown.

"We looked at the reproductive tracts of females at three, six and 24 hours post-mating," said Mack. "Just getting enough material through dissection is extremely difficult and time-consuming, but this kind of time-based evaluation of post-mating gene expression in Drosophila had never been done."

Perhaps surprisingly, very little is known about how gene expression in female reproductive tissues changes in response to the presence of sperm and male molecules. The study compared 3-day-old mated and unmated females and discovered the presence in mated females of a startling 539 genes whose activity changes after mating.

"One novel feature of this research was Paul's decision to look at what happens over time," said Bender. "That's how we found out that the activity hits a peak six hours after mating. This indicates quite a large genetic response in the female tract to male-derived molecules and sperm."

Though considerable research has been done on male Drosophila over the years, relatively little had focused on females. Just why the array of gene expression peaks at 6 hours is not yet clear, but revealing this timing could help in controlling insect pests. That is one reason the research was funded by the Binational Agricultural Research and Development (BARD) Fund, a joint program between the United States and Israel. Since 1979, BARD has funded nearly 900 research projects in almost all 50 states. Support for the research also came from The National Institutes of Health.

The Bender and Heifetz teams weren't operating in the dark, since earlier studies had examined some post-mating gene expression in Drosophila, but that earlier work did not examine expression over a set time period and involved examining the whole bodies of mated insects, not just their reproductive tracts.

The researchers' double approach using genomics and proteomics--the study of proteins and the products they turn on--was especially productive because it allowed them to identify genes they would not have found using a single approach.

"The next step will be to choose a few of the most promising genes and to explore their function in females," said Bender.

Once the gene functions are known, then scientists can begin to examine how to manipulate them--both to study the biology involved and to find potential targets for pest control.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>