Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Candidate Gene for Familial Idiopathic Pulmonary Fibrosis identified

29.06.2006
ELMOD2-gene is a prime candidate gene for familial idiopathic pulmonary fibrosis, suggests the recent study published by the researchers at the University and University Hospital of Helsinki, Finland. (Am J Hum Genet. 2006 Jul;79(1):149-54. Epub 2006 May 9)

Idiopathic pulmonary fibrosis (IPF) is a chronic, late-onset disease of lung parenchyma with unknown etiology. IPF has been treated with corticosteroids and immunosuppressive agents, but the prognosis and the response to treatment have remained poor, and the estimated time of survival from the diagnosis is less than 3 years. The pathogenesis and etiology of IPF are unknown, but the reports of multiple affected family members in the same family support the influence of genetic factors.

In their previous studies researchers at the University of Helsinki and the University Hospital of Helsinki observed that the prevalence of idiopathic pulmonary fibrosis distributed unevenly in Finland. The prevalence was two times higher in eastern and southern Savo (45/100 000 inhabitants) compared to the prevalence in Finland (16-18/100 000).

The researchers identified multiplex families with IPF and noticed that familial IPF patients clustered within Savo and Carelia, the same areas with the high prevalence, suggesting that they most likely share a common disease-causing allele introduced by a common ancestor.

They performed a genome-wide scan with six multiplex families. Three regions on chromosomes 3, 4, and 13 obtained NPL scores of 1.7, 1.7, and 1.6, respectively, and on chromosomes 9 and 12 possible shared haplotypes were seen. These five loci were fine mapped with 63 markers in an extended data set.

After fine mapping the researchers did not detect the linkage to the loci on chromosomes 3, 9, 12, and 13. On chromosome 4q31.1 the NPL score increased to 2.1, and one third of the affected families (8/24) shared a 110 kb haplotype, while none of the unaffected family members carried it. The susceptibility haplotype was carried in 34 % of all the genotyped families (12/35), and in 7.7 % (11/143) of 143 controls, with an odds ratio of 6.3 (p=0.0001, 95 % CI=2.3–15.9).

The critical region harbors two novel candidate genes, ELMOD2, and LOC152586 that both are poorly characterized. An in vitro translation assay with LOC152586 failed to produce any peptide suggesting it is not a protein-coding gene. mRNA expression of ELMOD2 was decreased in lung biopsies derived from IPF patients (N=6) compared to healthy controls (N=7).

ELMOD2 is potentially involved in apoptosis, phagocytosis, cell engulfment, and cell migration. It is expressed in functionally relevant tissue, in lung and in fibroblasts, and its expression is significantly decreased in IPF lung compared to healthy lung.

Therefore ELMOD2 becomes a prime candidate gene for familial IPF.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>