Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU scientists begin second phase of project to better understand disease

28.06.2006
A team of researchers at New York University's Center for Comparative Functional Genomics are embarking on the second phase of a collaborative research undertaking to predict structures of key proteins, which in turn shed light on their roles in diseases and offer pathways for cures. The inter-institutional project, which uses the IBM-backed World Community Grid, will focus on key human and malaria proteins, merging the biomedical and computation fields in carrying out the study.

"Protein folding is a big problem, there are a large number of proteins and a lot of possible shapes/fold," explained NYU scientist Bonneau, a new faculty member at NYU's Center for Comparative Functional Genomics, with a joint appointment in Biology and Computer Sciences. "In spite of the difficulty, it is an important problem, at the heart of deciphering genomes. The shear amount of compute power needed to carry out this project makes the use of grid computing essential."

It is for this reason that scientists at NYU have teamed up with IBM. The World Community Grid (wcgrid.org) aims to create the world's largest public computing grid to undertake projects that benefit humanity. IBM has developed the technical infrastructure that serves as the grid's foundation for scientific research.

The first and second phases of the NYU research are part of the Human Proteome Folding project (HPF), which combines the power the idle cycles on millions of computers (which we call the grid) to help scientists understand how human proteins fold, the shapes they take on after folding. As computers try millions of ways to fold the chains, they attempt to fold the protein in the way it actually folds in the human body (accurately predict the structure). The best shapes/3D-structures identified for each protein are returned to the scientists for further study and public release. Knowing the shapes of proteins will help researchers understand how proteins perform their functions in vivo (in the cell) and the roles of proteins in diseases. With a greater understanding of protein structure, scientists can learn more about the biological systems that underlie most human activity (biomedical, agricultural, environments). In the end, this work is enabled by the people, around the world, who have volunteered their idle cycles by downloading the grid client (wcgrid.org).

In the first phase, NYU biologists, headed by Professor Richard Bonneau, obtained structure predictions for more than 150 genomes. For more on the Bonneau laboratory's findings, go to http://www.cs.nyu.edu/~bonneau/Struct-pred.html. In this first phase, the NYU team employed "Rosetta," a computer program used in predicting de novo protein structure--"de novo" is the modeling of proteins when there is no "real world" structure on which to base predictions.

"With the first phase we aimed to get protein function by predicting the shape of many protein structures," explained Bonneau. "With the second phase, we will increase the resolution of a select subset of human proteins (attempt to determine the structure with respect to all atoms in the molecule). This phase also include a large test set and will thus serve to improve our understanding of protein structure prediction and advance the state of the art in protein structure prediction."

The NYU researchers, working with researchers studying new methods for early detection of cancer at Seattle's Institute for Systems Biology, will focus on cancer biomarkers--proteins expressed during the early stages of several cancers. They will also focus on proteins involved in host-parasite interactions that are key to our understanding of malaria. They will use a different mode of the Rosetta program to generate higher resolution structures, thereby refining predictions from the first phase with more accurate but also much more computationally demanding methods.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>