Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU scientists begin second phase of project to better understand disease

28.06.2006
A team of researchers at New York University's Center for Comparative Functional Genomics are embarking on the second phase of a collaborative research undertaking to predict structures of key proteins, which in turn shed light on their roles in diseases and offer pathways for cures. The inter-institutional project, which uses the IBM-backed World Community Grid, will focus on key human and malaria proteins, merging the biomedical and computation fields in carrying out the study.

"Protein folding is a big problem, there are a large number of proteins and a lot of possible shapes/fold," explained NYU scientist Bonneau, a new faculty member at NYU's Center for Comparative Functional Genomics, with a joint appointment in Biology and Computer Sciences. "In spite of the difficulty, it is an important problem, at the heart of deciphering genomes. The shear amount of compute power needed to carry out this project makes the use of grid computing essential."

It is for this reason that scientists at NYU have teamed up with IBM. The World Community Grid (wcgrid.org) aims to create the world's largest public computing grid to undertake projects that benefit humanity. IBM has developed the technical infrastructure that serves as the grid's foundation for scientific research.

The first and second phases of the NYU research are part of the Human Proteome Folding project (HPF), which combines the power the idle cycles on millions of computers (which we call the grid) to help scientists understand how human proteins fold, the shapes they take on after folding. As computers try millions of ways to fold the chains, they attempt to fold the protein in the way it actually folds in the human body (accurately predict the structure). The best shapes/3D-structures identified for each protein are returned to the scientists for further study and public release. Knowing the shapes of proteins will help researchers understand how proteins perform their functions in vivo (in the cell) and the roles of proteins in diseases. With a greater understanding of protein structure, scientists can learn more about the biological systems that underlie most human activity (biomedical, agricultural, environments). In the end, this work is enabled by the people, around the world, who have volunteered their idle cycles by downloading the grid client (wcgrid.org).

In the first phase, NYU biologists, headed by Professor Richard Bonneau, obtained structure predictions for more than 150 genomes. For more on the Bonneau laboratory's findings, go to http://www.cs.nyu.edu/~bonneau/Struct-pred.html. In this first phase, the NYU team employed "Rosetta," a computer program used in predicting de novo protein structure--"de novo" is the modeling of proteins when there is no "real world" structure on which to base predictions.

"With the first phase we aimed to get protein function by predicting the shape of many protein structures," explained Bonneau. "With the second phase, we will increase the resolution of a select subset of human proteins (attempt to determine the structure with respect to all atoms in the molecule). This phase also include a large test set and will thus serve to improve our understanding of protein structure prediction and advance the state of the art in protein structure prediction."

The NYU researchers, working with researchers studying new methods for early detection of cancer at Seattle's Institute for Systems Biology, will focus on cancer biomarkers--proteins expressed during the early stages of several cancers. They will also focus on proteins involved in host-parasite interactions that are key to our understanding of malaria. They will use a different mode of the Rosetta program to generate higher resolution structures, thereby refining predictions from the first phase with more accurate but also much more computationally demanding methods.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>