Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU scientists begin second phase of project to better understand disease

28.06.2006
A team of researchers at New York University's Center for Comparative Functional Genomics are embarking on the second phase of a collaborative research undertaking to predict structures of key proteins, which in turn shed light on their roles in diseases and offer pathways for cures. The inter-institutional project, which uses the IBM-backed World Community Grid, will focus on key human and malaria proteins, merging the biomedical and computation fields in carrying out the study.

"Protein folding is a big problem, there are a large number of proteins and a lot of possible shapes/fold," explained NYU scientist Bonneau, a new faculty member at NYU's Center for Comparative Functional Genomics, with a joint appointment in Biology and Computer Sciences. "In spite of the difficulty, it is an important problem, at the heart of deciphering genomes. The shear amount of compute power needed to carry out this project makes the use of grid computing essential."

It is for this reason that scientists at NYU have teamed up with IBM. The World Community Grid (wcgrid.org) aims to create the world's largest public computing grid to undertake projects that benefit humanity. IBM has developed the technical infrastructure that serves as the grid's foundation for scientific research.

The first and second phases of the NYU research are part of the Human Proteome Folding project (HPF), which combines the power the idle cycles on millions of computers (which we call the grid) to help scientists understand how human proteins fold, the shapes they take on after folding. As computers try millions of ways to fold the chains, they attempt to fold the protein in the way it actually folds in the human body (accurately predict the structure). The best shapes/3D-structures identified for each protein are returned to the scientists for further study and public release. Knowing the shapes of proteins will help researchers understand how proteins perform their functions in vivo (in the cell) and the roles of proteins in diseases. With a greater understanding of protein structure, scientists can learn more about the biological systems that underlie most human activity (biomedical, agricultural, environments). In the end, this work is enabled by the people, around the world, who have volunteered their idle cycles by downloading the grid client (wcgrid.org).

In the first phase, NYU biologists, headed by Professor Richard Bonneau, obtained structure predictions for more than 150 genomes. For more on the Bonneau laboratory's findings, go to http://www.cs.nyu.edu/~bonneau/Struct-pred.html. In this first phase, the NYU team employed "Rosetta," a computer program used in predicting de novo protein structure--"de novo" is the modeling of proteins when there is no "real world" structure on which to base predictions.

"With the first phase we aimed to get protein function by predicting the shape of many protein structures," explained Bonneau. "With the second phase, we will increase the resolution of a select subset of human proteins (attempt to determine the structure with respect to all atoms in the molecule). This phase also include a large test set and will thus serve to improve our understanding of protein structure prediction and advance the state of the art in protein structure prediction."

The NYU researchers, working with researchers studying new methods for early detection of cancer at Seattle's Institute for Systems Biology, will focus on cancer biomarkers--proteins expressed during the early stages of several cancers. They will also focus on proteins involved in host-parasite interactions that are key to our understanding of malaria. They will use a different mode of the Rosetta program to generate higher resolution structures, thereby refining predictions from the first phase with more accurate but also much more computationally demanding methods.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>