Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU scientists begin second phase of project to better understand disease

28.06.2006
A team of researchers at New York University's Center for Comparative Functional Genomics are embarking on the second phase of a collaborative research undertaking to predict structures of key proteins, which in turn shed light on their roles in diseases and offer pathways for cures. The inter-institutional project, which uses the IBM-backed World Community Grid, will focus on key human and malaria proteins, merging the biomedical and computation fields in carrying out the study.

"Protein folding is a big problem, there are a large number of proteins and a lot of possible shapes/fold," explained NYU scientist Bonneau, a new faculty member at NYU's Center for Comparative Functional Genomics, with a joint appointment in Biology and Computer Sciences. "In spite of the difficulty, it is an important problem, at the heart of deciphering genomes. The shear amount of compute power needed to carry out this project makes the use of grid computing essential."

It is for this reason that scientists at NYU have teamed up with IBM. The World Community Grid (wcgrid.org) aims to create the world's largest public computing grid to undertake projects that benefit humanity. IBM has developed the technical infrastructure that serves as the grid's foundation for scientific research.

The first and second phases of the NYU research are part of the Human Proteome Folding project (HPF), which combines the power the idle cycles on millions of computers (which we call the grid) to help scientists understand how human proteins fold, the shapes they take on after folding. As computers try millions of ways to fold the chains, they attempt to fold the protein in the way it actually folds in the human body (accurately predict the structure). The best shapes/3D-structures identified for each protein are returned to the scientists for further study and public release. Knowing the shapes of proteins will help researchers understand how proteins perform their functions in vivo (in the cell) and the roles of proteins in diseases. With a greater understanding of protein structure, scientists can learn more about the biological systems that underlie most human activity (biomedical, agricultural, environments). In the end, this work is enabled by the people, around the world, who have volunteered their idle cycles by downloading the grid client (wcgrid.org).

In the first phase, NYU biologists, headed by Professor Richard Bonneau, obtained structure predictions for more than 150 genomes. For more on the Bonneau laboratory's findings, go to http://www.cs.nyu.edu/~bonneau/Struct-pred.html. In this first phase, the NYU team employed "Rosetta," a computer program used in predicting de novo protein structure--"de novo" is the modeling of proteins when there is no "real world" structure on which to base predictions.

"With the first phase we aimed to get protein function by predicting the shape of many protein structures," explained Bonneau. "With the second phase, we will increase the resolution of a select subset of human proteins (attempt to determine the structure with respect to all atoms in the molecule). This phase also include a large test set and will thus serve to improve our understanding of protein structure prediction and advance the state of the art in protein structure prediction."

The NYU researchers, working with researchers studying new methods for early detection of cancer at Seattle's Institute for Systems Biology, will focus on cancer biomarkers--proteins expressed during the early stages of several cancers. They will also focus on proteins involved in host-parasite interactions that are key to our understanding of malaria. They will use a different mode of the Rosetta program to generate higher resolution structures, thereby refining predictions from the first phase with more accurate but also much more computationally demanding methods.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>