Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein tied to usher syndrome may be hearing's 'Missing Link'

28.06.2006
A protein associated with a disorder that causes deafness and blindness in people may be a key to unraveling one of the foremost mysteries of how we hear, says a study in the June 28 issue of the Journal of Neuroscience. Scientists with the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health (NIH), and the University of Sussex, Brighton, United Kingdom, have identified protocadherin-15 as a likely player in the moment-of-truth reaction in which sound is converted into electrical signals. (Protocadherin-15 is a protein made by a gene that causes one form of type 1 Usher syndrome, the most common cause of deaf-blindness in humans.)

The findings will not only provide insight into how hearing takes place at the molecular level, but also may help us figure out why some people temporarily lose their hearing after being exposed to loud noise, only to regain it a day or two later.


Stereocilia are arranged in three tiers atop a hair cell; Inset: Tip links connecting shorter stereocilia to their taller neighbors. Credit: Reproduced with permission from Nature Reviews Genetics 5, 489–98 copyright 2004 Macmillan Magazines Ltd.

"These findings offer a more precise picture of the complicated processes involved with our sense of hearing," says Elias A. Zerhouni, M.D., director of the NIH. "With roughly 15 percent of American adults reporting some degree of hearing loss, it is increasingly vital that we continue making inroads into our understanding of these processes, helping us seek new and better treatments, and opening the doors to better hearing health for Americans."

Tapping Your Inner "Tip Link"

Researchers have long known that hair cells, small sensory cells in the inner ear, convert sound energy into electrical signals that travel to the brain, a process called mechanotransduction. However, the closer one zooms in on the structures involved, the murkier our understanding becomes. When fluid in the inner ear is set into motion by vibrations emanating from the bones of the middle ear, the rippling effect causes bristly structures atop the hair cells to bump up against an overlying membrane and to deflect. Like seats in a three-row stadium, the bristles, called stereocilia, are arranged in tiers, with each lower seat connected to a higher seat by minute, threadlike bridges, or links. As the stereocilia are deflected, pore-like channels on the surface of the stereocilia open up, allowing potassium to rush in, and generating an electrical signal. Because the "tip link" – the link that connects the tip of the shorter stereocilium to the side of the adjacent, taller stereocilium – must be present for the channel to function, scientists believe that this structure may be responsible for opening and closing the channel gate. Researchers suggest that if they can learn the makeup of the tip link, they'll be that much closer to understanding how the gate mechanism operates.

"This research identifies protocadherin-15 to be one of the proteins associated with the tip link, thus finally answering a question that has been baffling researchers for years," says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "Thanks to the collaborative effort among these researchers, we are now at the closest point we have ever been to understanding the mechanism by which the ear converts mechanical energy – or energy of motion – into a form of energy that the brain can recognize as sound."

NIDCD's Zubair M. Ahmed, Ph.D., and Thomas B. Friedman, Ph.D., together with the University of Sussex's Richard Goodyear, Ph.D., and Guy P. Richardson, Ph.D., and others used several lines of evidence to identify a protein that Drs. Goodyear and Richardson had earlier found to comprise tip links in the inner ears of young chicks. The protein is referred to as the "tip-link antigen" (TLA) because it induces the production of special antibodies, which bind to the protein at the stereocilia tips.

Using mass spectrometry, a laboratory technique that breaks down a substance into its individual components, the researchers analyzed the makeup of the TLA and found two peptide sequences that match up to key segments of the protein protocadherin-15 in humans, mice, and chickens, suggesting that the two proteins are evolutionarily comparable. Additional experiments using western blot analysis, a technique that identifies individual proteins in a substance by separating them from one another by mass and testing how they react to certain antibodies, demonstrated that the antibody that recognizes protocadherin-15 in mice also binds to the TLA.

The team also analyzed the amino acid sequences of protocadherin-15 and discovered four distinct forms -- three of which are present in various developmental stages of the mouse inner ear. The researchers refer to the three alternative forms found in the inner ear as CD1, CD2, and CD3 because the sequential variations occur in the protein's "cytoplasmic domain" – a stretch of amino acids anchored inside the stereocilium. (The fourth form, referred to as SI, is likely to be secreted.) With the help of two imaging techniques that use antibodies to label a targeted protein, the team found that the distribution of protocadherin-15 along the stereocilium varies by form, with the CD3 form stationed only at the tips of the stereocilia in mature hair cells, while the CD1 form is found along the lengths of the stereocilia in mature cells, but not at the tips. In contrast, the CD2 form is expressed along the lengths of stereocilia during hair cell development, but is not present in mature hair cells.

Finally, the team found that a chemical known to break tip links – called BAPTA – had no effect on the CD1 and CD2 forms of protocadherin-15 but destroyed the CD3 form. Likewise, just as tip links are known to reappear roughly four hours after the chemical is removed, the CD3 form returned within four to 24 hours upon removal of the chemical.

Based on these findings, the researchers conclude that, not only is protocadherin-15 now identified as the tip-link antigen, but it is distributed in a specific way in relation to the tip-link complex. They propose that the CD3 form of protocadherin-15, located at the tip of the shorter stereocilium, may link directly or indirectly to the CD1 form on the adjacent, taller stereocilium. This scenario could help explain how tip links that are broken in real-life situations, such as from excessive exposure to loud noise, could cause temporary hearing loss until the link re-establishes itself and hearing is restored.

In future studies, the scientists plan to delve more deeply into the role that protocadherin-15 plays in the tip-link complex and whether it interacts with other components in the formation of the tip link. They also hope to determine how tip links can be stimulated to re-form, once broken.

Jennifer Wenger | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>