Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genes implicated in rheumatoid arthritis

DNA microarray analysis of disease-discordant identical twins uncovers three disease-relevant genes

Researchers continue to search for genetic clues into rheumatoid arthritis (RA), a chronic inflammatory joint disease. While its specific cause is not yet known, RA has been linked to an inherited susceptibility. Interestingly, despite its strong genetic component, RA's occurrence among siblings seems to be random.

In the quest to identify disease-specific gene expression profiles in patients with RA, researchers at the University of Michigan Medical Center turned to an ideal population: genetically identical, disease-discordant twins. The July issue of Arthritis & Rheumatism ( highlights the results of their state-of-the-art genetic analysis.

Increasing evidence over the past several years indicates that B-lymphocytes play a central role in RA's development. In this study, microarray analysis was applied to lymphoblastoid B cell lines (LCLs) from 11 pairs of monozygotic twins, all with one healthy and one RA-affected twin. A revolutionary DNA technology, microarray can be used to not only compare gene expression in two different tissue samples, but to examine the expression of thousands of genes at once. The researchers extracted complementary DNA from the cells of every twin, labelled samples with fluorescent dye to distinguish RA cells from disease-free cells, and hybridized each on a 20,000-gene chip. Then, using immunohistochemistry and real-time polymerase chain reaction, they confirmed the expression of the most significantly over-expressed genes in synovial tissues. In addition, they compared gene expression in synovial tissue of the RA patients with gene expression in synovial tissue of patients with osteoarthritis (OA).

Between the disease-discordant twins, minor yet measurable differences were detected in the expression of 1,163 transcripts, representing 827 uniquely named genes. Of this total, 3 genes were significantly over-expressed in the cells of RA patients relative to their healthy co-twins. The most significantly over-expressed gene was laeverin, a newly discovered enzyme that works to degrade proteins. The second most significantly over-expressed gene was 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), a steroid pathway enzyme linked to inflammation and bone erosion. This gene was also found over-expressed in the synovial tissue of OA patients. The third most significantly over-expressed gene was cysteine-rich, angiogenic inducer 61 (Cyr61), well-established for its role in the formation of new blood vessels.

"Our findings provide the first evidence that laeverin is abundantly expressed in synovial tissue," notes the study's leading author, Joseph Holoshitz, M.D. "11ß-HSD2 and Cyr61 have not previously been directly implicated in RA," he adds. Uncovering 3 new genes with a clear abundance in RA, this study supports the promise of microarray analysis to not only provide further insights into the genetic components of this inflammatory disease, but also to help identify candidates for therapeutic intervention.

Amy Molnar | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>