Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater Microscope Finds Biological Treasures in the Subtropical Ocean

28.06.2006
Scientists towing an underwater digital microscope across the Atlantic have found possible missing links to the global nitrogen cycle, which in turn is linked to ocean productivity.

In a recent report in the journal Science, researchers from the Woods Hole Oceanographic Institution (WHOI) found abundant colonies of Trichodesmium. The multi-celled, filamentous organism is thought to play a significant role in the input of nitrogen to the upper layers of the tropical and subtropical ocean, nearly half of the Earth’s surface.


The video plankton recorder (VPR) on the deck of research vessel Oceanus. (Photo by Cabell Davis, Woods Hole Oceanographic Institution)


Collage of images of Trichodesmium collected by the video plankton recorder. The spherical images are the puffs and the elongated images the tufts. (Courtesy Cabell Davis, Woods Hole Oceanographic Institution)

Lead author Cabell Davis, a senior scientist in the WHOI Biology Department, and co-author Dennis McGillicuddy, an associate scientist in the WHOI Applied Ocean Physics and Engineering Department, suggest that nitrogen fixation rates for Trichodesmium may be 2.7 to 5 times higher than previously estimated from traditional sampling.

Trichodesmium is one of many tiny photosynthetic organisms that use the sun’s energy, carbon dioxide and other nutrients to make organic material that constitutes the basis of the marine food web. Production of biomass in surface waters is typically limited by nitrogen, but Trichodesmium is able to escape that constraint by virtue of its ability to utilize nitrogen gas, which is plentiful in the atmosphere and upper ocean.

Trichodesmium abundance has been difficult to measure using traditional net sampling because the colonies are easily damaged or destroyed during collection. Sampling with bottles has provided estimates of abundance of the organism, but it is a snapshot view.

The Video Plankton Recorder (VPR) is a noninvasive instrument, consisting of a digital video-microscope on a towed vehicle that samples at 30 frames per second and automatically sorts the Trichodesmium images from other organisms.

“If traditional sampling has underestimated colonies in other regions of the world, our estimates of global Trichodesmium abundance will increase dramatically,” Davis said. “That increase could potentially account for a significant portion of the global nitrogen cycle, thus changing our perception of the importance of this organism to the productivity of the world ocean.”

Davis and McGillicuddy towed the VPR across the North Atlantic between the Azores and the Slope Water south of Woods Hole in 2003, skirting category 3 hurricane Fabian. The vehicle was towed at six meters per second, about 12 nautical miles an hour, surveying continually and automatically between the surface and about 130 meters (400 feet) deep like a yo-yo. Nearly 7,000 vertical profiles were taken during the 5,517 kilometer (about 3,443 miles) transit across the North Atlantic.

While the colonies of Trichodesmium are fragile and thought to be destroyed when mixed by strong winds, the team found no evidence that hurricane Fabian, with winds up to 200 kilometers an hour (about 125 miles per hour), had caused them any damage. The team sampled the upper layers of the ocean across the wake of the storm.

The researchers also found a strong correlation between temperature, salinity and abundance of Trichodesmium colonies in the various eddies and the Gulf Stream the VPR crossed during its survey.

Two forms of Trichodesmium, called puffs and tufts because of their shapes, were found in higher concentrations in warm salty water. Higher concentrations of the organism were also found in warm anticyclonic eddies than in cold cyclonic ones, but the reasons are unclear.

Davis and McGillicuddy are doing similar survey aboard WHOI’s research vessel Knorr, which just passed through the Panama Canal. The researchers will deploy the VPR and survey across the Caribbean Sea, a region known to have very high concentrations of Trichodesmium. The ship will arrive back at Woods Hole on June 29.

Davis says the new Caribbean VPR survey will provide much needed information about Trichodesmium population estimates in its tropical home, information that has been difficult to obtain due to the patchy nature of the species in ocean waters.

The project was supported by the Richard B. Sellars Endowed Research Fund, the Andrew W. Mellon Foundation Endowed Fund for Innovative Research, the WHOI Ocean Life Institute, the National Science Foundation and NASA.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>