Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria, beware: New finding about E coli could block infections, lead to better treatments

27.06.2006
A newly discovered receptor in a strain of Escherichia coli can be blocked to avert infection, a finding that might aid in developing better therapies to treat bacterial infections resulting in food poisoning, diarrhea or plague.

Researchers at UT Southwestern Medical Center are the first to identify the receptor, known as QseC, used by a diarrhea-causing strain of E coli to receive signals from human flora and hormones in the intestine and express virulence genes to initiate infection.

In a study made available online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences, researchers describe how they used phentolamine, an alpha blocker drug used to treat hypertension, to successfully impede signaling to the receptor. Without such signals, bacteria then pass blindly through the digestive tract without infecting cells.

"This receptor is found in many pathogens, so we can use this knowledge to design specific antagonists to block bacterial infections," said Dr. Vanessa Sperandio, senior author of the study and assistant professor of microbiology at UT Southwestern.

Prior research by Dr. Sperandio found that when a person ingests the more virulent enterohemorrhagic E coli, or EHEC – which is usually transmitted through contaminated food such as raw meat – it travels peacefully through the digestive tract until reaching the intestine. There, however, chemicals produced by the friendly gastrointestinal microbial flora and the human hormones epinephrine and norepinephrine alert the bacteria to its location.

This cellular cross talk triggers a cascade of genetic activations prompting EHEC to colonize and translocate toxins into cells, altering the makeup of the cells and robbing the body of nutrients. An infected person may develop bloody diarrhea or even hemolytic uremic syndrome, which can cause death in immune-weakened people, the elderly and young children.

The new study identifies QseC as the specific receptor by which EHEC senses the signals. When the receptor binds to signaling molecules, the bacterium can infect cells.

Researchers tested the capacity of adrenergic antagonists, drugs such as alpha and beta blockers, to disrupt the receptor's sensing ability. They found that phentolamine binds to the QseC receptor and occupies the pocket that the receptor would use to recognize the host epinephrine and norepinephrine signals – thus blocking the QseC receptor from sensing the signals and preventing it from being able to express its virulence genes in cells.

This knowledge opens the door to further understanding of the signaling processes between microbes and humans and to the development of novel treatments of bacterial infections with antagonists to these signals, Dr. Sperandio said.

New therapies are important because treating some bacterial infections with conventional antibiotics can cause the release of more toxins and may worsen disease outcome.

That importance is magnified because of the QseC receptor's existence in other types of bacteria, including, Shigella, which causes dysentery; Salmonella, which causes food poisoning and gastroenteritis; and Yersinia, which causes bubonic plague. Those are all emerging infectious diseases that afflict thousands of people each year in the United States and worldwide, according to the Centers for Disease Control and Prevention.

"Overuse of antibiotics has led bacteria to develop resistance to antibiotics, so a novel type of therapy is needed," Dr. Sperandio said.

Cliff Despres | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>