Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to early diagnosis of autism may be in the placenta

27.06.2006
Researchers at Yale School of Medicine have discovered in the placenta what may be the earliest marker for autism, possibly helping physicians diagnose the condition at birth, rather than the standard age of two or older.

The findings are reported in the June 26 online issue of Biological Psychiatry. Autism is a developmental disorder that has a profound effect on socialization, communication, learning and other behaviors. In most cases, onset is early in infancy. Information on the earliest development aspects of autism in children has been limited even though approximately one in every 200 children is diagnosed with an Autism Spectrum Disorder (ASD). The earlier the diagnosis is made, the greater the treatment impact.

Current studies are searching for characteristics in children at risk for ASD so that the diagnosis can be made prior to age one. The ideal time for diagnosis would be at birth, according to senior author on the study Harvey J. Kliman, M.D., research scientist in the Department of Obstetrics, Gynecology & Reproductive Sciences at the Yale School of Medicine.

In previous work, Kliman had observed an unusual pathologic finding in the placentas from children with Asperger Syndrome, an ASD condition which, like autism, impairs the ability to relate to others.

"By serendipity, at a dinner party I happened to sit next to George M. Anderson, a research scientist in the Yale Child Study Center who had access to many cases of children with ASD," said Kliman. "We realized that by working together we might be able to determine if this placental abnormality could be a useful clinical marker."

With the help of Andrea Jacobs-Stannard, a student in Kliman's laboratory, and Katarzyna Chawarska and Fred R. Volkmar of the Yale Child Study Center, the group designed a study to see if the placental abnormality, specifically the presence of trophoblast inclusions, was a marker for ASD. The multidisciplinary team of Yale researchers compared placentas from 13 children with ASD to those from 61 unaffected children for the presence of trophoblast inclusions.

They found that the placentas from ASD children were three times more likely to have the inclusions. Kliman and the team identified trophoblast inclusions by performing microscopic examinations of placental tissues.

"We knew that trophoblast inclusions were increased in cases of chromosome abnormalities and genetic diseases, but we had no idea whether they would be significantly increased in cases of ASD," said Kliman. "These results are consistent with studies by others who have shown that ASD has a clear genetic basis."

Trophoblast inclusions reflect abnormal folding of microscopic layers in the placenta and appear to result from altered cell growth. Kliman likened the presence of trophoblast inclusions to an automobile check-engine-light. "When the light goes on it simply means that something is not right," said Kliman. "If the light is on and there is, for example, steam coming from under the hood, then it is likely that the radiator is leaking. However, if the check engine light is on and there is nothing obviously wrong, then the car should be carefully checked."

The Yale team plans to replicate the evaluation with larger multi-center and prospective studies. They will examine the placentas of the children in the study in greater detail to gain insight into the biological basis of the inclusions in ASD.

Volkmar said, "If the work is confirmed by the next series of studies, then the finding of trophoblast inclusions at the time of birth in the absence of any obvious genetic abnormalities would be an indication to have a child examined by a specialist to determine the presence of ASD."

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>