Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Stem Cells Implanted Into A Living Animal

18.12.2001


Using tiny rust-containing spheres to tag cells, scientists from Johns Hopkins and elsewhere have successfully used magnetic resonance imaging to track stem cells implanted into a living animal, believed to be a first.



In the December issue of the journal Nature Biotechnology, the research team report that the neuronal stem cells take up and hold onto the spheres, which contain a compound of iron and oxygen. The iron-laden cells create a magnetic black hole easily spotted by magnetic resonance imaging (MRI), they report.

"Until now, tissue had to be removed from an animal to see where stem cells were going, so this gives us an important tool," says author Jeff Bulte, Ph.D., associate professor of radiology at the Johns Hopkins School of Medicine. "Tracking stem cells non-invasively will likely be required as research advances, although human studies are still some time away."


Scientists at the University of Wisconsin School of Veterinary Medicine mixed the magnetic spheres, made by Trevor Douglas at Temple University, with stem cells that make the white matter, or neuronal covering, of the brain. Then they injected the iron-laden cells into the brains of rats that lack that covering.

Using MRI scanners at the National Institutes of Health, Bulte watched the cells travel away from the injection site. The research was funded by the National Science Foundation, the Oscar Rennebohm Foundation and the Keck Foundation.

The rusty spheres, known as magnetic dendrimers, represent an important improvement over other magnetic tags, Bulte says. And even though the amount of iron used to label the cells is tiny compared to the total amount of iron in the body, the labeled cells stand out from other cells, magnetically speaking.

"During scanning, these labeled cells disturb the magnetic field created by the MRI machine, causing water molecules that pass by to get ’out of phase,’" Bulte explains. "When this happens, the imaging scanner loses the signal, and the area looks black on the image."

Other researchers have used dendrimers containing gadolinium, which is also useful as a contrast medium for MRI, but which is toxic if it stays in the body for a prolonged time. But animal cells have a process to deal with iron and a storage mechanism for the metal, making the iron-based dendrimers inherently safer, says Bulte. For instance, iron is a key part of the transporter for oxygen and carbon monoxide found in red blood cells.

He adds that while it was not easy to develop the way to make magnetic dendrimers, it is easy to label cells with them. In essence, the dendrimer and the cell do that work themselves. Dendrimers stick to cells because they are charged -- similar to static electricity. Cells then suck them inside and lock them away in the cellular equivalent of a garbage can -- a tiny holding spot called an endosome.

Other magnetic tags have used antibodies or other molecules that recognize and bind to certain features on cells, says Bulte. Unlike those tags, the magnetic dendrimers are universal; the scientists showed that different cell types will take in dendrimers just by mixing the spheres and the cells together, without affecting the cells’ behavior.

Bulte’s research with magnetic dendrimers is aligned with the Johns Hopkins Institute of Cell Engineering, created in early 2001 to advance research into the biology and potential application of pluripotent stem cells (primitive cells that become any type of cell in the body) and multipotent or adult stem cells (precursor cells that are naturally limited to becoming a specific tissue’s cell types).

A next step with magnetic dendrimers, Bulte says, is watching the cells’ distribution when they are injected into the circulatory system instead of the brain.

Bulte also wants to study white blood cells in diseases of the central nervous system, such as multiple sclerosis, as well as the behavior of embryonic stem cells and stem cells from bone marrow. (Stem cells from bone marrow and blood have been used for decades in cancer treatments and more recently for some inherited metabolic disorders.)

Other co-authors of the report are Ian Duncan, Brian Witwer and Su-Chun Zhang of the University of Wisconsin School of Veterinary Medicine; Erica Strable of Temple University; Joseph Frank, Bobbi Lewis, Holly Zywicke, Brad Miller and Peter van Gelderen of the NIH; and Bruce Moskowitz of the Institute for Rock Magnetism at the University of Minnesota, Minneapolis. Bulte (NIH) and Douglas (Temple) have applied for a patent on these magnetic dendrimers.

Joanna Downer | International Science News

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>