Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Stem Cells Implanted Into A Living Animal

18.12.2001


Using tiny rust-containing spheres to tag cells, scientists from Johns Hopkins and elsewhere have successfully used magnetic resonance imaging to track stem cells implanted into a living animal, believed to be a first.



In the December issue of the journal Nature Biotechnology, the research team report that the neuronal stem cells take up and hold onto the spheres, which contain a compound of iron and oxygen. The iron-laden cells create a magnetic black hole easily spotted by magnetic resonance imaging (MRI), they report.

"Until now, tissue had to be removed from an animal to see where stem cells were going, so this gives us an important tool," says author Jeff Bulte, Ph.D., associate professor of radiology at the Johns Hopkins School of Medicine. "Tracking stem cells non-invasively will likely be required as research advances, although human studies are still some time away."


Scientists at the University of Wisconsin School of Veterinary Medicine mixed the magnetic spheres, made by Trevor Douglas at Temple University, with stem cells that make the white matter, or neuronal covering, of the brain. Then they injected the iron-laden cells into the brains of rats that lack that covering.

Using MRI scanners at the National Institutes of Health, Bulte watched the cells travel away from the injection site. The research was funded by the National Science Foundation, the Oscar Rennebohm Foundation and the Keck Foundation.

The rusty spheres, known as magnetic dendrimers, represent an important improvement over other magnetic tags, Bulte says. And even though the amount of iron used to label the cells is tiny compared to the total amount of iron in the body, the labeled cells stand out from other cells, magnetically speaking.

"During scanning, these labeled cells disturb the magnetic field created by the MRI machine, causing water molecules that pass by to get ’out of phase,’" Bulte explains. "When this happens, the imaging scanner loses the signal, and the area looks black on the image."

Other researchers have used dendrimers containing gadolinium, which is also useful as a contrast medium for MRI, but which is toxic if it stays in the body for a prolonged time. But animal cells have a process to deal with iron and a storage mechanism for the metal, making the iron-based dendrimers inherently safer, says Bulte. For instance, iron is a key part of the transporter for oxygen and carbon monoxide found in red blood cells.

He adds that while it was not easy to develop the way to make magnetic dendrimers, it is easy to label cells with them. In essence, the dendrimer and the cell do that work themselves. Dendrimers stick to cells because they are charged -- similar to static electricity. Cells then suck them inside and lock them away in the cellular equivalent of a garbage can -- a tiny holding spot called an endosome.

Other magnetic tags have used antibodies or other molecules that recognize and bind to certain features on cells, says Bulte. Unlike those tags, the magnetic dendrimers are universal; the scientists showed that different cell types will take in dendrimers just by mixing the spheres and the cells together, without affecting the cells’ behavior.

Bulte’s research with magnetic dendrimers is aligned with the Johns Hopkins Institute of Cell Engineering, created in early 2001 to advance research into the biology and potential application of pluripotent stem cells (primitive cells that become any type of cell in the body) and multipotent or adult stem cells (precursor cells that are naturally limited to becoming a specific tissue’s cell types).

A next step with magnetic dendrimers, Bulte says, is watching the cells’ distribution when they are injected into the circulatory system instead of the brain.

Bulte also wants to study white blood cells in diseases of the central nervous system, such as multiple sclerosis, as well as the behavior of embryonic stem cells and stem cells from bone marrow. (Stem cells from bone marrow and blood have been used for decades in cancer treatments and more recently for some inherited metabolic disorders.)

Other co-authors of the report are Ian Duncan, Brian Witwer and Su-Chun Zhang of the University of Wisconsin School of Veterinary Medicine; Erica Strable of Temple University; Joseph Frank, Bobbi Lewis, Holly Zywicke, Brad Miller and Peter van Gelderen of the NIH; and Bruce Moskowitz of the Institute for Rock Magnetism at the University of Minnesota, Minneapolis. Bulte (NIH) and Douglas (Temple) have applied for a patent on these magnetic dendrimers.

Joanna Downer | International Science News

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>