Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-regulating enzyme is also a target for anti-depressive drugs

26.06.2006
Anti-cancer possibilities seen for certain monoamine oxidase inhibitors

In 2005, professor Ramin Shiekhattar, Ph.D., at The Wistar Institute and his colleagues reported details about an enzyme involved in appropriately repressing sets of neuronal genes in non-neuronal cells.

At the time, the scientists noted that the enzyme appeared to fit into the same extended enzyme family that includes monoamine oxidases, psychoactive enzymes that oxidize dopamine and norepinephrin. Inhibitors of these enzymes have long been used to treat depression, certain other psychiatric and emotional disorders, and Parkinson's disease.

Now, in a study published online today in the June 26 issue of Chemistry & Biology, Shiekhattar and his team show that the enzyme is itself a target for certain monoamine oxidase inhibitors used to treat depression. One member of this family of drugs in particular, called tranylcypromine (brand name Parnate®, manufactured by GlaxoSmithKline), was seen to inhibit the enzyme most strongly. The findings suggest that these anti-depressive drugs may have additional applications in other medically relevant areas.

For example, Shiekhattar notes that the enzyme studied exists in a complex with another type of gene-regulating enzyme that has been implicated in the development of cancer. Inhibitors of that second enzyme are currently in clinical trails as cancer therapies.

"Might particular monoamine oxidase inhibitors, currently used primarily to treat depression, have anti-cancer activity too?" Shiekhattar says. "Our findings indicate this could be the case, and we are currently screening these drugs against many different types of cancer to answer that question."

Because the primary role of the enzyme is to repress sets of related genes, many other areas of potential influence for the monoamine oxidase inhibitors are possible too, according to Shiekhattar. At the very least, he says, the drugs will likely prove to be useful laboratory tools for answering fundamental questions about genetic expression.

The enzyme in question is called BHC110/LSD1, and it was the first human histone demethylase identified. The enzyme's function is to remove methyl groups from small molecules called histones to modify them in ways that trigger gene repression. The second enzyme found in complex with BHC110/LSD1, acts in a similar way. Called a deacetylase, this enzyme removes acetyl groups from histones to repress gene expression.

In the body's scheme for safely storing genes away until needed, DNA is tightly looped around the histones, kept secure by enzymes similar to the ones studied by the Wistar team until made accessible by the activity of other enzymes responsible for gene expression. Eight histones comprise a nucleosome, and long strings of nucleosomes coil in turn into chromatin, the basic material of chromosomes.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>