Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants avoid feeling the burn

26.06.2006
Photoprotective effect measured for the first time at single biomolecule level

Too much sun – for plants as well as people – can be harmful to long-term health. But to avoid the botanical equivalent of "lobster tans," plants have developed an intricate internal defense mechanism, called photoprotection, which acts like sunscreen to ward off the sun's harmful rays.

"We knew that biomolecules called carotenoids participate in this process of photoprotection, but the question has been, how does this work?" said Iris Visoly-Fisher, a postdoctoral research associate in the Biodesign Institute at Arizona State University.

Carotenoids act as 'wires' to carry away the extra sunlight energy in the form of unwanted electrons, somehow wicking away the extra electrons across long distances from locations that could damage plant tissues and photosynthesis. During photoprotection, the consensus school of thought was that carotenoids--the source of the orange pigments in carrots and Vitamin A -- become oxidized, or charged, losing an electron in the process.

Now, Fisher and other ASU scientists have found a way to measure for the first time the electrical conductance within such an important biomolecule. And in doing so, the team has produced a new discovery which shatters the prevailing view. The research team found that oxidation is not required for photoprotection, but rather, carotenoids in a neutral, or uncharged state, can readily handle the electron overload from the sun.

Their findings have been published in the prestigious journal Proceedings of the National Academy of Sciences (PNAS) under the title"Conductance of a Biomolecular Wire" (http://www.pnas.org/cgi/content/abstract/0600593103v1).

"This is a remarkable experimental tour-de-force and the result is quite unexpected," said Lindsay, who directs Fisher's work in the Biodesign Institute's Center for Single Molecule Biophysics. "Carotene was regarded as the poster child for this molecular mechanism, but it turns out that a much simpler mechanism works just fine."

The innovative work was a collaboration between several ASU departments and the Univesidad Nacional de Rio Cuarto in Argentina. In addition to Fisher, who was lead author on the paper, contributions from chemistry and biochemistry professors Devens Gust, Tom Moore and Ana Moore of ASU's Center for the Study of Early Events in Photosynthesis were instrumental in the project.

"The initial interest was to more fully understand how photosynthesis works," said Fisher. Because our center focuses on electron transport in a single molecule, Devens Gust and Tom and Ana Moore suggested that we look at single molecule transport in carotene."

To get at the heart of the problem, Fisher had to attempt an experiment that had never been done before for any biomolecule: to control the charge of the biomolecule while measuring its ability to hold a current.

By holding a carotenoid under potential control, Fisher could control whether the biomolecule was in a neutral state or in the charged state (the oxidized state), while simultaneously measuring the electron transport through a single molecule.

"The importance of this result is not only for understanding natural systems and photosynthesis, but also for the fact that technically, for the first time, we could hold a molecule in a state pretty close to the natural conditions found in the plant," said Fisher.

To make the experimental measurements, Fisher first needed to work out several technically challenging variations to a method first pioneered by electrical engineering professor Nongjian Tao of ASU's Fulton School of Engineering. In concept, it's much like trying to measure the current of a wire found in an everyday household appliance, only in this case, the "wiring" is a miniscule 2.8 nanometers long and less than a single nanometer thick, or about 10,000 times smaller than the width of a human hair.

One measurement problem is that carotenoids are highly prone to react with water and oxygen, so all measurements had to be performed in an environment that would both protect the molecule and immerse it in an environment mimicking a biological cell membrane, where the carotenoids are found in nature.

Other innovations included developing a new insulating coat of polyethylene for the probe tip of a Scanning Tunneling Microscope (STM), which is used to measure the electron flow across single molecules. Also, the chemical ends of the carotenoids had to be modified so they could chemically stick to the STM probe's gold tipped electrodes.

To make a single measurement, the carotenoid molecules, which lie flat on the surface of a tiny reaction chamber, are first picked up by the STM probe's gold tip and chemically bound between these two electrodes, forming a kind of nanoscale bridge. "Gold is a soft metal, and when you pull it apart, eventually, you can measure the conduction of a single carotenoid molecule between the gold electrodes," said Fisher.

The research team found that, especially when compared to metals, carotenoids are not very conductive, even when measuring the most oxidized form. However, the electrical conduction was two orders of magnitude higher when compared to what is needed for the photoprotective effect to work.

The group also measured how fast the electrons traveled across the carotenoid bridge between the electrodes. By measuring carotenoids of different chemical lengths, the team showed that the travel rate was fast enough to match or exceed measurements performed in the plant system.

One of the greatest challenges of the experiment came down to the human endurance of taking thousands of measurements over an intense, six month period. "We needed to keep this finicky molecule away from the light, so sometimes, the microscope room became like a cave, where I was sitting for hours and hours in the dark," said Fisher.

For Fisher and the rest of the team, however, the main satisfaction was being able to break down a complex process to understand its simplest components and produce a groundbreaking discovery.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>