Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reverse Parkinson's symptoms in animal models

26.06.2006
Statistics for neurological disorders are grim. More than a million Americans suffer from Parkinson's disease alone--a number that is expected to soar over the next few decades as the population ages. No current therapies alter the fundamental clinical course of the condition.

Now, scientists at Whitehead Institute, in collaboration with colleagues at several research centers, including the University of Missouri's School of Biological Sciences, have identified a key biological pathway that, when obstructed, causes Parkinson's symptoms. Even more importantly, they have figured out how to repair that pathway and restore normal neurological function in certain animal models.

"For the first time we've been able to repair dopaminergic neurons, the specific cells that are damaged in Parkinson's disease," says Whitehead Member and Howard Hughes Medical Institute Investigator Susan Lindquist, senior author on the paper that will be published June 22 online in Science.

In 2003, researchers in the Lindquist lab described using yeast cells as "living test tubes" in which they could study Parkinson's. A paper published in Science reported that when a Parkinson's-related protein called alpha-synuclein was over-expressed in these cells, clumps of misshapen proteins gathered near the membrane, and in many cases the cells either became sick or died.

Aaron Gitler and Anil Cashikar, postdoctoral researchers in the Lindquist lab, decided to follow up on these results by asking a simple question: Is it possible to rescue these cells when an over-expression of alpha-synuclein would normally makes them sick?

They began with an array of yeast cells in which each cell over-expressed one particular gene. This array, prepared by scientists at the Harvard Institute of Proteomics, covers the entire yeast genome. All cells were also infected with alpha-synuclein. They reasoned that if they identified genes whose over-expression rescued a cell, that would tell them something about how alpha-synuclein made the cell sick in the first place.

Most of the proteins that they identified pointed to a pathway that involves two cellular organelles, the endoplasmic reticulum (ER) and the Golgi. The ER is the cell's protein factory, where proteins assume their requisite shapes. Once a protein has properly folded, it is trafficked over to the Golgi, where it is fine-tuned and further prepared for its designated task.

Working with Antony Cooper from the University of Missouri, Kansas City, Lindquist's team demonstrated that when alpha-synuclein becomes mutated and clumps at the cell surface, it manages to drag away a protein that helps transport between the ER and the Golgi. Proteins are blocked from navigating this crucial route, and the cell dies.

This isn't just a general toxic effect caused by any misfolded protein. It is specific to alpha-synuclein, the protein associated with Parkinson's Disease.

"All this was done in yeast," says Gitler. "Our next goal was to find out what this told us about actual neurons."

If mutations of alpha-synuclein dragged the ER/Golgi transport protein away from doing its job, as the yeast research indicated, then cell death might be averted simply by increasing the levels of this transport protein. Working with colleagues at University of Pennsylvania, University of Alabama, and Purdue University, the consortium tested this hypothesis in the fruit fly, C. elegans worm, and in neurons culled from rats--all of which had alpha-synuclein-induced Parkinson's symptoms. In every case, symptoms were reversed by increasing levels of this transport protein.

"We tried this a number of different ways, from creating transgenic animals that naturally over-expressed this protein, to injecting a copy of the gene for this transport protein into the neurons through a gene-therapy technique," says Gitler. "In all cases the results were the same. Cell death ceased, and the neurons were restored to normal health."

"Protein folding problems are universal, so we hoped we could use these simple model organisms to study something as deeply complex as neurodegenerative disease," says Lindquist, who is also a professor of biology at MIT. "Most people thought we were crazy. But we now not only have made progress in understanding this dreadful disease, but we have new platform for screening pharmaceuticals."

These findings also help explain why biopsies from Parkinson's patients indicate stress in the ER of dopaminergic neurons.

"This gives a whole new direction for understanding what's been going wrong in these patients, and for considering much better strategies for treating people," says Cooper.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>