Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buckyballs boost antibody's chemotherapy payload

23.06.2006
Nanoparticles could deliver multi-drug therapy to tumors

In the ongoing search for better ways to target anticancer drugs to kill tumors without making people sick, researchers find that nanoparticles called buckyballs might be used to significantly boost the payload of drugs carried by tumor-targeting antibodies.

In research due to appear in an upcoming issue of the journal Chemical Communications, scientists at Rice University and The University of Texas M. D. Anderson Cancer Center describe a method for creating a new class of anti-cancer compounds that contain both tumor-targeting antibodies and nanoparticles called buckyballs. Buckyballs are soccer ball-shaped molecules of pure carbon that can each be loaded with several molecules of anticancer drugs like Taxol®.

In the new research, the scientists found they could load as many as 40 buckyballs into a single skin-cancer antibody called ZME-018. Antibodies are large proteins created by the immune system to target and attack diseased or invading cells.

Previous work at M. D. Anderson has shown that ZME-018 can be used to deliver drugs directly into melanoma tumors, and work at Rice has shown that Taxol can be chemically attached to a buckyball.

"The idea that we can potentially carry more than one Taxol per buckyball is exciting, but the real advantage of fullerene immunotherapy over other targeted therapeutic agents is likely to be the buckyball's potential to carry multiple drug payloads, such as Taxol plus other chemotherapeutic drugs," said Rice's Lon Wilson, professor of chemistry. "Cancer cells can become drug resistant, and we hope to cut down on the possibility of their escaping treatment by attacking them with more than one kind of drug at a time."

Researchers have long dreamed of using antibodies like ZME-018 to better target chemotherapy drugs like Taxol, and M. D. Anderson's Michael G. Rosenblum, Ph.D., professor in the Department of Experimental Therapeutics and Chief of the Immunopharmacology and Targeted Therapy Laboratory, has conducted some of the pioneering work in this field.

"This is an exciting opportunity to apply novel materials such as fullerenes to generate targeted therapeutics with unique properties," Rosenblum said. "If successful, this could usher in a new class of agents for therapy not only for cancer, but for other diseases as well."

While it's possible to attach drug molecules directly to antibodies, Wilson said scientists haven't been able to attach more than a handful of drug molecules to an antibody without significantly changing its targeting ability. That happens, in large part, because the chemical bonds that are used to attach the drugs -- strong, covalent bonds -- tend to block the targeting centers on the antibody's surface. If an antibody is modified with too many covalent bonds, the chemical changes will destroy its ability to recognize the cancer it was intended to attack.

Wilson said the team from Rice and M. D. Anderson had planned to overcome this limitation by attaching multiple molecules of Taxol to each buckyball, which would then be covalently connected to the antibodies. To the team's surprise, many more buckyballs than expected attached themselves to the antibody. Moreover, no covalent bonds were required, so the increased payload did not significantly change the targeting ability of the antibody.

Wilson said certain binding sites on the antibody are hydrophobic (water repelling), and the team believes that these hydrophobic sites attract the hydrophobic buckyballs in large numbers so multiple drugs can be loaded into a single antibody in a spontaneous manner to give the antibody-drug agent more "bang for the buck."

"The use of these nanomaterials solves some intractable problems in targeted therapy and additionally demonstrates the increasing value of the team science approach bridging different disciplines to uniquely address existing problems," Rosenblum said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>